Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T06:13:48.175Z Has data issue: false hasContentIssue false

Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries

Published online by Cambridge University Press:  24 November 2016

Vladimir P. Oleshko*
Affiliation:
Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Andrew A. Herzing
Affiliation:
Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Christopher L. Soles
Affiliation:
Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Jared J. Griebel
Affiliation:
Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA
Woo J. Chung
Affiliation:
Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA
Adam G. Simmonds
Affiliation:
Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA
Jeffrey Pyun
Affiliation:
Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymers synthesized via inverse vulcanization represent an emerging class of electrochemically active polymers recently used in cathodes for Li–S batteries, capable of realizing enhanced capacity retention (1,005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. The composite cathodes are organized in complex hierarchical three-dimensional (3D) architectures, which contain several components and are challenging to understand and characterize using any single technique. Here, multimode analytical scanning and transmission electron microscopies and energy-dispersive X-ray/electron energy-loss spectroscopies coupled with multivariate statistical analysis and tomography were applied to explore origins of the cathode-enhanced capacity retention. The surface topography, morphology, bonding, and compositions of the cathodes created by combining sulfur copolymers with varying 1,3-diisopropenylbenzene content and conductive carbons have been investigated at multiple scales in relation to the electrochemical performance and physico-mechanical stability. We demonstrate that replacing the elemental sulfur with organosulfur copolymers improves the compositional homogeneity and compatibility between carbons and sulfur-containing domains down to sub-5 nm length scales resulting in (a) intimate wetting of nanocarbons by the copolymers at interfaces; (b) the creation of 3D percolation networks of conductive pathways involving graphitic-like outer shells of aggregated carbons; (c) concomitant improvements in the stability with preserved meso- and nanoscale porosities required for efficient charge transport.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agulleiro, I. & Fernandez, J.J. (2011). Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582583.Google Scholar
Airbus Defense & Space (2014). Airbus Zephyr reaches next level, April 24, 2014. Press Release. Available at https://airbusdefenceandspace.com.newsroom/news-and-features/airbus-zephyr-reaches-next-level/ (retrieved April 29, 2015).Google Scholar
Akridge, J.R., Mikhaylik, Y.V. & White, N. (2004). Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion 175, 243245.Google Scholar
Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Scordilis Kelley, C. & Affinito, J. (2009). On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156, A694A702.CrossRefGoogle Scholar
Bals, S., Kabius, B., Haider, M., Radmilovic, V. & Kisielevski, C. (2004). Annular dark field imaging in a TEM. Solid State Commun 130, 675680.Google Scholar
BBC News Science & Environment (2010). “Eternal” solar plane’s records are confirmed. 24 December 2010. Available at http://www.bbc.co.uk/news/science-environment-12074162 (retrieved March 4, 2013).Google Scholar
Bonnet, N., Herbin, M. & Vautrot, P. (1997). Multivariate image analysis and segmentation in microanalysis. Scanning Microsc 11, 121.Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J. & Tarascon, J.-M. (2012). Li–O2 and Li–S batteries with high energy storage. Nat Mater 11, 1929.Google Scholar
Brückner, J., Thieme, S., Böttger-Hiller, F., Bauer, I., Grossmann, H.T., Strubel, P., Althues, H., Spange, S. & Kaskel, S. (2013). Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Funct Mater 24, 12841289.Google Scholar
Buehrer, W., Altorfer, F., Mesot, J., Bill, H., Carron, P. & Smith, H.G. (1991). Lattice dynamics and the diffuse phase transition of lithium sulfide investigated by coherent neutron scattering. J Phys Condens Matter 3, 10551064.CrossRefGoogle Scholar
Cañas, N.A., Hirose, K., Pascucci, B., Wagner, N., Friedrich, K.A. & Hiesgen, R. (2013). Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97, 4251.CrossRefGoogle Scholar
Cao, R., Xu, W., Lv, D., Xiao, J. & Zhang, J.-G. (2015). Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5, 1402273.CrossRefGoogle Scholar
Cao, Y., Li, X., Aksay, I.A., Lemmon, J., Nie, Z., Yang, Z. & Liu, J. (2011). Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. J Phys Chem Chem Phys 13, 76607665.Google Scholar
Chao, Z.S., Lan, Z. & Yu, J. (2011). Preparation and electrochemical properties of polysulfide polypyrrole. J Power Sources 196, 1026310266.CrossRefGoogle Scholar
Chen, M. & Adams, S. (2015). High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J Solid State Electrochem 19, 697702.CrossRefGoogle Scholar
Chung, W.-J., Griebel, J.J., Kim, E.-T., Yoon, H.-S., Simmonds, A.G., Ji, H.-J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Somogyi, A., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K.-C. & Pyun, J. (2013). The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem 5, 518524.Google Scholar
Czigany, Z. & Hultman, L. (2010). Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes. Ultramicroscopy 110, 815819.CrossRefGoogle ScholarPubMed
Demir-Cakan, R., Morcrette, M., Nouar, F., Davoisne, C., Devic, T., Gonbeau, D., Dominko, R., Serre, C., Ferey, G. & Tarascon, J.-M. (2011). Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133, 1615416160.CrossRefGoogle ScholarPubMed
Deng, Z., Zhang, Z., Lai, Y., Liu, J., Li, J. & Liu, Y. (2013). Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading. J Electrochem Soc 160(4), A553A558.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer. pp. 197–202.Google Scholar
Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. (2011). Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23, 56415644.Google Scholar
Elazari, R., Salitra, G., Talyosef, Y., Grinblat, Y., Scordilis-Kelley, C., Xiao, A., Affinito, J. & Aurbach, D. (2010). Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J Electrochem Soc 157, A1131A1138.CrossRefGoogle Scholar
Fang, X. & Peng, H. (2015). A revolution in electrodes: Recent progress in rechargeable lithium-sulfur batteries. Small 11, 14881511.Google Scholar
Ferreira, A.G.M. & Lobo, L.Q. (2011). The low-pressure phase diagram of sulfur. J Chem Thermodynamics 43, 95104.Google Scholar
Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York: Springer. pp. 61–390.CrossRefGoogle Scholar
Griebel, J.J., Li, G, Glass, R.S., Char, K. & Pyun, J. (2015). Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J Polym Sci A Polym Chem 53, 173177.CrossRefGoogle Scholar
Griebel, J.J., Namnabat, S., Kim, E.-T., Himmbelhuber, R., Moronta, D.H., Chung, W.J., Simmonds, A.G., Ngyugen, N., Mackay, M.E., Char, K., Glass, R.S., Norwood, R.A. & Pyun, J. (2014 a). New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv Mater 26, 30143018.Google Scholar
Griebel, J.J., Nguyen, N.A., Astashkin, A.V., Glass, R.S., Mackay, M.E., Char, K. & Pyun, J. (2014 b). Preparation of dynamic covalent polymers via inverse vulcanization of elemental sulfur. ACS Macro Lett 3, 12581261.Google Scholar
Grogger, W., Hofer, F. & Kothleitner, G. (1998). Quantitative chemical phase analysis of EFTEM elemental maps using scatter diagrams. Micron 29, 4351.Google Scholar
Hassoun, J. & Scrosati, B. (2010 a). A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49, 23712374.Google Scholar
Hassoun, J. & Scrosati, B. (2010 b). Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22, 51985201.Google Scholar
Hassoun, J., Sun, Y.-K. & Scrosati, B. (2011). Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J Power Sources 196, 343348.Google Scholar
Hassoun, J., Kim, J., Lee, D.-J., Jung, H.-G., Lee, S.-M., Sun, Y.-K. & Scrosati, B. (2012). A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon–sulfur battery. J Power Sources 202, 308308.CrossRefGoogle Scholar
Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. (2003). All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem Commun 5, 701705.Google Scholar
Helen, M., Reddy, M.A., Diemant, T., Golla-Schindler, U., Behm, R.J., Kaiser, U. & Fichtner, M. (2015). Single step transformation of sulfur to Li2S2/Li2S in Li-S batteries. Sci Rep 5, 12146.Google Scholar
Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Laxmikant, S.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L. & Liu, J. (2014). Manipulating surface reactions in lithium-sulfur batteries using hybrid anode structures. Nat Commun 5, 4015.Google Scholar
Islam, M.M., Ostadhossein, A., Borodin, O., Yeates, A.T., Tipton, W.W., Hennig, R.G., Kumar, N. & van Duin, A.C.T. (2015). ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Phys Chem Chem Phys 17, 33833393.Google Scholar
Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A. & Archer, L.A. (2011). Porous hollow carbon @ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50, 59045908.Google Scholar
Jeanguillaume, C. (1985). Multiparameter statistical analysis of STEM micrographs. J Microsc Electron 10, 409415.Google Scholar
Ji, X., Lee, K.T. & Nazar, L.F. (2009). A highly ordered nanostructured carbon–sulfur cathode for lithium–sulfur batteries. Nat Mater 8, 500506.Google Scholar
Ji, X. & Nazar, L. F. (2010). Advances in Li-S batteries. J Mater Chem 20, 98219826.Google Scholar
Ji, X., Evers, S., Black, R. & Nazar, L.F. (2011 a). Stabilizing lithium–sulfur cathodes using polysulfide reservoirs. Nat Commun 2, 325.Google Scholar
Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J. & Zhang, Y. (2011 b). Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4, 50535059.Google Scholar
Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J. & Zhang, Y. (2011 c). Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133, 1852218525.Google Scholar
Kim, H., Lee, J., Ahn, H., Kim, O. & Park, M.J. (2015). Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat Commun 6, 7278.Google Scholar
Kim, J., Oleshko, V.P., Hudson, S.D., Soles, C., Griebel, J.J., Chung, W.J., Simmonds, A.G. & Pyun, J. (2013). AEM and FESEM investigation of the capacity retention mechanisms in novel composite sulfur copolymer cathodes for high-energy density Li-S batteries. Microsc Microanal 19(Suppl 2), 16561657.Google Scholar
Kinoshita, S., Okuda, K., Machida, N., Naito, M. & Sigematsu, T. (2014). All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ion 256, 97102.Google Scholar
Kiya, Y., Henderson, J.C. & Abruna, H.D. (2007). 4-Amino-4H-1,2,4-triazole-3,5-dithiol a modifiable organosulfur compound as a high-energy cathode for lithium-ion rechargeable batteries. J Electrochem Soc 154, A844A848.Google Scholar
Kotula, P.G., Keenan, M.R. & Michael, J.R. (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9, 117.Google Scholar
Levin, B.D.A. & Muller, D.A. (2013). Physical limitations for transmission electron microscopy of lithium battery materials. Microsc Microanal 19(Suppl 2), 12281229.Google Scholar
Levin, B.D.A., Zachman, M.J., Werner, J.G., Wiesner, U., Kourkoutis, L.F. & Muller, D. (2014). Characterizing sulfur in TEM and STEM, with applications to Li-S batteries. Microsc Microanal 20(Suppl 3), 446447.CrossRefGoogle Scholar
Li, W., Zheng, G., Yang, Y., Seh, Z.W., Liu, N. & Cui, Y. (2013). High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci U S A 110, 71487153.Google Scholar
Li, X., Cao, Y., Qi, W., Saraf, L.V., Xiao, J., Nie, Z., Mietek, J., Zhang, J.-G., Schwenzer, B. & Liu, J. (2011). Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21, 1660316610.CrossRefGoogle Scholar
Li, Z., Huang, Y., Yuan, L., Hao, Z. & Huang, Y. (2015). Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 92, 4163.Google Scholar
Liang, C., Dudney, N.J. & Howe, J.Y. (2009). Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21, 47244730.CrossRefGoogle Scholar
Lim, J., Pyun, J. & Char, K. (2015). Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials. Angew Chem Int Ed 54, 32493258.Google Scholar
Liu, M.L., Visco, S.J. & Dejonghe, L.C. (1991 a). Novel solid redox polymerization electrodes. All‐solid‐state, thin‐film, rechargeable lithium batteries. J Electrochem Soc 138, 18911895.Google Scholar
Liu, M.L., Visco, S.J. & Dejonghe, L.C. (1991 b). Novel solid redox polymerization electrodes. Electrochemical properties. J Electrochem Soc 138, 18961901.Google Scholar
Marmorstein, D., Yu, T.H., Striebel, K.A., McLarnon, F.R., Hou, J. & Cairns, E.J. (2000). Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89, 219226.Google Scholar
Muto, S., Yoshida, T. & Tatsumi, K. (2009). Diagnostic nano-analysis of materials properties by multivariate curve resolution applied to spectrum images by S/TEM-EELS. Mater Trans 50, 964969.Google Scholar
Nellist, P.D. (2011). The principles of STEM imaging. In Scanning Transmission Electron Microscopy. Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 91116. New York: Springer.Google Scholar
Nikkei Asian Review, December 17–18, 2015 – Press Release; http://asia.nikkei.com/Tech-Science/Tech/Sony-battery-to-offer-40-longer-phone-life/ Sony battery to offer 40% longer phone life; ibid; http://techon.nikkeibp.co.jp/atclen/news_en/15mk/121800252/ Sony developing high-capacity rechargeable battery (retrieved March 18, 2016).Google Scholar
Oleshko, V.P. (2012). The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale. J Nanosci Nanotechnol 12, 85808588.Google Scholar
Oleshko, V.P., Herzing, A., Kim, J., Schaefer, J., Soles, C., Griebel, J.J., Chung, W.J., Simmonds, A.G. & Pyun, J. (2015 a). Multiscale structural architectures of novel sulfur copolymer composite cathodes for high-energy density Li-S batteries studied by analytical multimode STEM imaging and tomography. Microsc Microanal 21(Suppl 3), 143144.Google Scholar
Oleshko, V.P., Kim, J., Schaefer, J., Hudson, S., Soles, C.L., Simmonds, A.G., Griebel, J.J., Glass, R.S., Char, K. & Pyun, J. (2015 b). Structural origins of enhanced capacity retention in copolymerized sulfur–based composite cathodes for high-energy density Li-S batteries. MRS Commun 5, 353364.Google Scholar
Oleshko, V.P., Lam, T., Ruzmetov, D., Haney, P., Lezec, H.J., Davydov, A.V., Krylyuk, S., Cumings, J. & Talin, A.A. (2014). Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes. Nanoscale 6, 1175611768.Google Scholar
Oleshko, V.P., Scordilis-Kelley, C. & Xiao, A. (2009 b). In situ and ex situ electron microscopy and spectroscopy investigation of capacity fade mechanisms of rechargeable Li-S batteries. Microsc Microanal 15(Suppl 2), 718719.Google Scholar
Oleshko, V.P., Scordilis-Kelley, C., Xiao, A., Affinito, J., Talyossef, Y., Elazari, R., Grinblat, Y. & Aurbach, D. (2009 a). Characterization of advanced high-energy density Li-S batteries by FE-AEM, SEM/EDS X-ray spectral imaging and feature sizing/chemical typing techniques. Microsc Microanal 15(Suppl 2), 13981399.Google Scholar
Orazem, M.E. & Tribollet, B. (2008). Electrochemical Impedance Spectroscopy. The Electrochemical Society Series. Hoboken, NJ: A John Wiley & Sons, Inc. pp. 97–460.Google Scholar
Peled, E., Sternberg, Y., Gorenshtein, A. & Lavi, Y. (1989). Lithium-sulfur battery: Evaluation of dioxolane-based electrolytes. J Electrochem Soc 136, 16211625.Google Scholar
Pennycook, S.J. (2011). A scan through the history of STEM. In Scanning Transmission Electron Microscopy. Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 190. New York: Springer.Google Scholar
Ruzmetov, D., Oleshko, V.P., Haney, P.M., Lezec, H., Karki, K., Baloch, K.H., Agrawal, A.K., Davydov, A.V., Krylyuk, S., Liu, Y., Huang, J.Y., Tanase, M., Cumings, J. & Talin, A.A. (2012). Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett 12, 505511.CrossRefGoogle ScholarPubMed
Sarahan, M.C., Chi, M., Masief, D.J. & Browning, N.D. (2011). Point defect characterization in HAADF-STEM images using multivariate statistical analysis. Ultramicroscopy 111, 251257.Google Scholar
Schuster, J., He, G., Mandlmeier, B., Yim, T., Lee, K.T., Bein, T. & Nazar, L.F. (2012). Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51, 35913595.Google Scholar
Scordilis-Kelley, C.A., Mikhaylik, Y., Kovalev, I., Oleshko, V.P., Campbell, C. & Affinito, J.D. (2009). Electrochemical cells comprising porous structures comprising sulfur. Internatl Pat Appl. WO 2011/031297 A2, Sion Power Corp, 28 August.Google Scholar
Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.-C. & Cui, Y. (2013). Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat Commun 4, 1331.Google Scholar
Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K. & Pyun, J. (2014). Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li−S batteries. ACS Macro Lett 3, 229232.Google Scholar
Suryanto, B.H.R. & Zhao, C. (2016). Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions. Chem Commun 52, 64396442.Google Scholar
Steudel, R. & Eckert, B. (2003). Solid sulfur allotropes. In Topics in Current Chemistry (vol. 230 A. de Meijere et al. (Eds.), pp. 179. Berlin: Springer-Verlag.Google Scholar
Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. (2013). A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4, 1481.Google Scholar
Tatsuma, T., Sotomura, T., Sato, T., Buttry, D.A. & Oyama, N. (1995). Dimercaptan-polyaniline cathodes for lithium batteries: Addition of a polypyrrole derivative for rapid charging. J Electrochem Soc 142, L182L184.CrossRefGoogle Scholar
Thévenaz, P., Ruttimann, U.E. & Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 7, 2741.Google Scholar
Ticey, J., Oleshko, V.P., Zhu, Y., Wang, C. & Cumings, J. (2015). In situ analytical transmission electron microscopy study of electrochemical lithiation of a sulfur—carbon nanotube composite cathode. Microsc Microanal 15(Suppl 3), 15131514.Google Scholar
Vaughey, J., Liu, G. & Zhang, J.-G. (2014). Stabilizing the surface of lithium metal. MRS Bull 39, 429435.Google Scholar
Wang, J., Yang, J., Wan, C., Du, K., Xie, J. & Xu, N. (2003). Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater 13, 487492.Google Scholar
Wang, J.L., Yang, J., Xie, J.Y., Xu, N.X. & Li, Y. (2002). Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4, 499502.Google Scholar
Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S. & Zhao, T. (2011). Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115, 60576063.Google Scholar
Wu, M., Cui, Y. & Fu, Y. (2015). Li2S nanocrystals confined in free-standing carbon paper for high performance lithium-sulfur batteries. ACS Appl Mater Interfaces 7, 2147921486.Google Scholar
Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J. & Liu, J. (2012). A soft approach to encapsulate sulfur. Adv Mater 24, 11761181.Google Scholar
Xu, R., Belharouak, I., Zhang, X., Chamoun, R., Yu, C., Ren, Y., Nie, A., Shahbazian-Yassar, R., Lu, J., Li, J.C.M. & Amine, K. (2014). Insight into sulfur reactions in Li−S batteries. ACS Appl Mater Interfaces 6, 2193821945.Google Scholar
Xu, R., Lu, J. & Amine, K. (2015). Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv Energy Mater 5, 1500408.Google Scholar
Yan, J., Liu, X., Qi, H., Li, W., Zhou, Y., Yao, M. & Li, B. (2015). High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem Mater 27, 63946401.Google Scholar
Yang, Y., McDowell, M.T., Jackson, A., Cha, J.J., Hong, S.S. & Cui, Y. (2010). New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10, 14861491.Google Scholar
Yang, Y., Zheng, G., Misra, S., Nelson, J., Toney, M.F. & Cui, Y. (2012). High-capacity micrometer-sized Li2S particles as cathode materials. J Am Chem Soc 134, 1538715394.Google Scholar
Yao, H., Zheng, G., Hsu, P.-C., Kong, D., Cha, J.J., Li, W., Seh, Z.W., McDowell, M.T., Yan, K., Liang, Z., Narasihman, V.K. & Cui, Y. (2014). Improving lithium–sulfur batteries through spatial control of sulfur species deposition on a hybrid electrode surface. Nat Commun 5, 3943.Google Scholar
Zeng, Q., Li, F., Gentle, I.R., Cheng, H.-M. & Wang, D.-W. (2015). Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in Li-S batteries. Carbon 93, 161168.Google Scholar
Supplementary material: File

Oleshko supplementary material

Figure 1S-4S

Download Oleshko supplementary material(File)
File 26.1 MB