Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T22:36:13.240Z Has data issue: false hasContentIssue false

An In Situ SEM-FIB-Based Method for Contrast Enhancement and Tomographic Reconstruction for Structural Quantification of Porous Carbon Electrodes

Published online by Cambridge University Press:  04 August 2014

Santhana K. Eswara-Moorthy*
Affiliation:
Département Science et Analyse des Matériaux (UIS), Centre de Recherche Public – Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg Central Facility of Electron Microscopy, Group of Electron Microscopy of Material Science, Universität Ulm, 89081 Ulm, Germany
Prasanth Balasubramanian
Affiliation:
Central Facility of Electron Microscopy, Group of Electron Microscopy of Material Science, Universität Ulm, 89081 Ulm, Germany
Willem van Mierlo
Affiliation:
Central Facility of Electron Microscopy, Group of Electron Microscopy of Material Science, Universität Ulm, 89081 Ulm, Germany
Jörg Bernhard
Affiliation:
Central Facility of Electron Microscopy, Group of Electron Microscopy of Material Science, Universität Ulm, 89081 Ulm, Germany
Mario Marinaro
Affiliation:
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, 89081 Ulm, Germany
Margret Wohlfahrt-Mehrens
Affiliation:
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, 89081 Ulm, Germany
Ludwig Jörissen
Affiliation:
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, 89081 Ulm, Germany
Ute Kaiser
Affiliation:
Central Facility of Electron Microscopy, Group of Electron Microscopy of Material Science, Universität Ulm, 89081 Ulm, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

A new in situ Scanning Electron Microscope-Focused Ion Beam-based method to study porous carbon electrodes involving Pt filling of pores from gaseous precursors has been demonstrated to show drastically improved image contrast between the carbon and porous phases when compared with the Si-resin vacuum-impregnation method. Whereas, the latter method offered up to 20% contrast, the new method offers remarkably higher contrast (42%), which enabled fast semi-automated demarcation of carbon boundaries and subsequent binarization of the images with very high fidelity. Tomographic reconstruction of the porous carbon electrode was then obtained from which several morphological parameters were quantified. The porosity was found to be 72±2%. The axial and radial tortuosites were 1.45±0.04 and 1.43±0.04, respectively. Pore size, which is defined to be the distance from the medial axis of the pore to the nearest solid boundary, was quantified. Average pore size determined from the pore size distribution was 90 nm and the corresponding 1 sigma ranges from 45 to 134 nm. Surface-to-volume ratio of the carbon phase was 46.5 µm−1. The ratio of total surface area to the total volume of electrode including pores (i.e., specific surface area) was 13 µm−1.

Type
Instrumentation and Techniques Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armand, M. & Tarascone, J.-M. (2008). Building better batteries. Nature 451, 652657.CrossRefGoogle ScholarPubMed
Brandon, N.P. & Brett, D.J. (2006). Engineering porous materials for fuel cell applications. Phil Trans R Soc A 364, 147159.CrossRefGoogle ScholarPubMed
Cormen, T.H., Leiserson, C.E., Rivest, R.L. & Stein, C. (2009). Introduction to Algorithms, 3rd ed.Cambridge, MA: MIT Press.Google Scholar
Delerue, J.F., Perrier, E., Yu, Z.Y. & Velde, B. (1999). New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils. Phys Chem Earth, Part A 24, 639644.CrossRefGoogle Scholar
Ender, M., Joos, J., Carraro, T. & Ivers-Tiffée, E. (2011). Three-dimensional reconstruction of a composite cathode for lithium-ion cells. Electrochem Comm 13, 166168.CrossRefGoogle Scholar
Ender, M., Joos, J., Carraro, T. & Ivers-Tiffée, E. (2012). Quantitative characterization of LiFePO4 cathodes reconstructed by FIB/SEM tomography. J Electrochem Soc 159(7), A972A980.CrossRefGoogle Scholar
García, R.E. & Chiang, Y.-M. (2007). Spatially resolved modeling of microstructurally complex battery architectures. J Electrochem Soc 154(9), A856A864.CrossRefGoogle Scholar
Iwai, H., Shikazono, N., Matsui, T., Teshima, H., Kishimoto, M., Kishida, R., Hayashi, D., Matsuzaki, K., Kanno, D., Saito, M., Muroyama, H., Eguchi, K., Kasagi, N. & Yoshida, H. (2010). Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. J Power Sources 195(4), 955961.CrossRefGoogle Scholar
Kaiser, J., Simonov, P.A., Zaikovskii, V.I., Hartnig, C., Jörissen, L. & Savinova, E.R. (2007). Influence of carbon support on the performance of platinum based oxygen reduction catalysts in a polymer electrolyte fuel cell. J Appl Electrochem 37, 14291437.CrossRefGoogle Scholar
Lee, J.-S., Kim, S.T., Cao, R., Choi, N.-S., Liu, M., Lee, K.T. & Cho, J. (2011). Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1, 3450.CrossRefGoogle Scholar
Long, J.W., Dunn, B., Rolison, D.R. & White, H.S. (2004). Three-dimensional battery architectures. Chem Rev 104, 44634492.CrossRefGoogle ScholarPubMed
Lorensen, W.E. & Cline, H.E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM Comp Graphics 21(4), 163169.CrossRefGoogle Scholar
Marinaro, M., Theil, S., Jörissen, L. & Wohlfahrt-Mehrens, M. (2013). New insights about the stability of lithiumbis(trifluoromethane)sulfonimide-tetraglyme as electrolyte for Li–O2 batteries. Electrochim Acta 108, 795800.CrossRefGoogle Scholar
Meyer, F. & Beucher, S. (1990). Morphological segmentation. J Vis Commun Image Represent 1(1), 2146.CrossRefGoogle Scholar
Sato, M., Bitter, I., Bender, M.A., Kaufman, A.E. & Nakajima, M. (2000). TEASAR: tree-structure extraction algorithm for accurate and robust skeletons. Proceedings of The Eighth Pacific Conference on Computer Graphics and Applications, Hong Kong, pp. 281–449.CrossRefGoogle Scholar
Thiedmann, R., Hartnig, C., Manke, I., Schmidt, V. & Lehnert, W. (2009). Local structural characteristics of pore space in GDLs of PEM fuel cells based on geometric 3D graphs. J Electrochem Soc 156(11), B1339B1347.CrossRefGoogle Scholar
Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L. & Munroe, P. (2007). Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bulletin 32(5), 408416.CrossRefGoogle Scholar
Uchida, M., Aoyama, Y., Tanabe, M., Yanagihara, N., Eda, N. & Ohta, A. (1995). Influences of both carbon supports and heat‐treatment of supported catalyst on electrochemical oxidation of methanol. J Electrochem Soc 142, 25722576.CrossRefGoogle Scholar