Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T14:28:31.144Z Has data issue: false hasContentIssue false

An Examination of Kernite (Na2B4O6(OH)2·3H2O) Using X-Ray and Electron Spectroscopies: Quantitative Microanalysis of a Hydrated Low-Z Mineral

Published online by Cambridge University Press:  06 September 2011

Douglas C. Meier*
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology(NIST), 100 Bureau Dr. MS8371, Gaithersburg, MD 20899-8371, USA
Jeffrey M. Davis
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology(NIST), 100 Bureau Dr. MS8371, Gaithersburg, MD 20899-8371, USA
Edward P. Vicenzi
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology(NIST), 100 Bureau Dr. MS8371, Gaithersburg, MD 20899-8371, USA Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Mineral borates, the primary industrial source of boron, are found in a large variety of compositions. One such source, kernite (Na2B4O6(OH)2·3H2O), offers an array of challenges for traditional electron-probe microanalysis (EPMA)—it is hygroscopic, an electrical insulator, composed entirely of light elements, and sensitive to both low pressures and the electron beam. However, the approximate stoichiometric composition of kernite can be analyzed with careful preparation, proper selection of reference materials, and attention to the details of quantification procedures, including correction for the time dependency of the sodium X-ray signal. Moreover, a reasonable estimation of the mineral's water content can also be made by comparing the measured oxygen to the calculated stoichiometric oxygen content. X-ray diffraction, variable-pressure electron imaging, and visual inspection elucidate the structural consequences of high vacuum treatment of kernite, while Auger electron spectroscopy and X-ray photoelectron spectroscopy confirm electron beam-driven migration of sodium and oxygen out of the near-surface region (sampling depth ≈ 2 nm). These surface effects are insufficiently large to significantly affect the EPMA results (sampling depth ≈ 400 nm at 5 keV).

Type
Microanalysis Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anovitz, L.M. & Grew, E.S. (1996). Mineralogy, petrology, and geochemistry of boron: An introduction. In Boron: Mineralogy, Petrology, and Geochemistry, Grew, E.S. & Anovitz, L.M. (Eds.), pp. 140. Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
Baer, D.R., Lea, A.S., Geller, J.D., Hammond, J.S., Kover, L., Powell, C.J., Seah, M.P., Suzuki, M., Watts, J.F. & Wolstenholme, J. (2010). Approaches to analyzing insulators with Auger electron spectroscopy: Update and overview. J Electron Spectrosc Related Phenomena 176, 8094.CrossRefGoogle Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000). Quantitative electron probe microanalysis of boron. J Solid State Chem 154, 177187.CrossRefGoogle Scholar
Birajdar, B., Peranio, N. & Eibl, O. (2008). Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes. Superconductor Sci Technol 21, 073001.CrossRefGoogle Scholar
C&E News. (2008). Making borosilicate nanoparticles is now possible. Chem Eng News 86, 3435.Google Scholar
Cooper, W.F., Larsen, F.K., Coppens, P. & Giese, R.F. (1973). Electron population analysis of accurate diffraction data. V. Structure and one-center charge refinement of the light-atom mineral kernite, Na2B4O6(OH)2·3H2O. Am Mineral 58, 2131.Google Scholar
Coppens, P., Cooper, W.F. & Larsen, F.K. (1972). Charge-distribution in light-atom mineral kernite. Science 176, 165166.CrossRefGoogle ScholarPubMed
Davis, L.E., MacDonald, N.C., Palmberg, P.W., Riach, G.E. & Weber, R.E. (1976). Handbook of Auger Electron Spectroscopy. Eden Prairie, MN: Physical Electronics Division, Perkin-Elmer Corporation.Google Scholar
Donovan, J.J. & Vicenzi, E.P. (2008). Water by EPMA—New Developments. Microsc Microanal 14(S2), 12741275 (CD-ROM).CrossRefGoogle Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.CrossRefGoogle ScholarPubMed
Garrett, D.E. (1998). Borates: Handbook of Deposits, Processing, Properties, and Use. San Diego, CA: Academic Press.Google Scholar
Gedeon, O., Hulinsky, V. & Jurek, K. (2000). Microanalysis of glass-containing alkali ions. Microchimica Acta 132, 505510.CrossRefGoogle Scholar
Giese, R.F. Jr. (1966). Crystal structure of kernite, Na2B4O6(OH)2·3H2O. Science 154, 14531454.CrossRefGoogle Scholar
Goldstein, J.I., Lyman, C.E., Newbury, D.E., Lifshin, E., Echlin, P., Sawyer, L., Joy, D.C. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Springer Science and Business Media.CrossRefGoogle Scholar
Hawthorne, F.C., Burns, P.C. & Grice, J.D. (1996). The crystal chemistry of boron. In Boron: Mineralogy, Petrology, and Geochemistry, Grew, E.S. & Anovitz, L.M. (Eds.), pp. 41115. Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
ISO/TR 22335:2007. (2007). Surface chemical analysis—Depth profiling—Measurement of sputtering rate: Mesh-replica method using a mechanical stylus profilometer. Geneva, Switzerland: International Organization for Standardization.Google Scholar
Jiménez, J.A., González-Doncel, G. & Ruano, O.A. (1995). Mechanical properties of ultrahigh boron steels. Adv Mater 7, 130136.CrossRefGoogle Scholar
Kreiner, M., Muranaka, T., Kato, J., Ren, Z.-A., Akimatsu, J. & Maeno, Y. (2008). Superconductivity in heavily boron-doped silicon carbide. Sci Technol Adv Mater 9, 044205.Google Scholar
May, G.S. & Spanos, C.J. (2006). Fundamentals of Semiconductor Manufacturing and Process Control. Hoboken, NJ: John Wiley & Sons, Inc.CrossRefGoogle Scholar
McGee, J.J. & Anovitz, L.M. (1996). Electron probe microanalysis of geologic materials for boron. In Boron: Mineralogy, Petrology, and Geochemistry, Grew, E.S. & Anovitz, L.M. (Eds.), pp. 771788. Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
Nash, W.P. (1992). Analysis of oxygen with the electron microprobe: Applications to hydrated glass and minerals. Am Mineral 77, 453457.Google Scholar
Pouchou, J.-L. & Pichoir, R. (1984). Un nouveau modèle de calcul pour la microanalyse quantitative par spectrométrie de rayons X—Partie I: Application à l'analyse d'échantillons homogènes. La Récherche Aerospatiale 3, 167192.Google Scholar
Rickwood, P.C. (1981). The largest crystals. Am Mineral 66, 885907.Google Scholar
Ritter, S.K. (2009). Boron dreams: Priestley medalist M. Frederick Hawthorne has some unfinished business. Chem Eng News 87, 1214.CrossRefGoogle Scholar
Sallay, S.I. (1980). Process for producing boron compounds from borate ores. United States Patent #4196177.Google Scholar
Senior, L.A. & Sloto, R.A. (2006). Arsenic, boron, and fluoride in ground water in and near diabase intrusions, Newark Basin, southeastern Pennsylvania. USGS Scientific Investigations Report 2006-5261. Reston, VA: U.S. Geological Survey.Google Scholar
Sennova, N.A., Bobnova, R.S., Filatov, S.K., Paufler, P., Meyer, D.C., Levin, A.A. & Polyakova, I.G. (2005). Room, low, and high temperature dehydration and phase transitions of kernite in vacuum and in air. Cryst Res Technol 40, 563572.CrossRefGoogle Scholar
SRM 660b. (2010). NIST SRM 660b—Line position and line shape, standard for powder diffraction. Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
Tanaka, M., Takeguchi, M. & Furaya, K. (2008). X-ray analysis and mapping by wavelength dispersive X-ray spectroscopy in an electron microscope. Ultramicroscopy 108, 14271431.CrossRefGoogle Scholar
Züchner, L., Chan, J.C.C., Müller-Warmuth, W. & Eckert, H. (1998). Short-range order and site connectivities in sodium aluminoborate glasses: I. Quantification of local environments by high-resolution 11B, 23Na, and 27Al solid-state NMR. J Phys Chem B 102, 44954506.CrossRefGoogle Scholar