Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T19:34:10.248Z Has data issue: false hasContentIssue false

An Efficient and Cost-Effective Method for Preparing Transmission Electron Microscopy Samples from Powders

Published online by Cambridge University Press:  09 September 2015

Haiming Wen*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA Idaho National Laboratory, Fuel Performance and Design Department, Idaho Falls, ID 83415-6188, USA
Yaojun Lin
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
David N. Seidman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA Northwestern University Center for Atom Probe Tomography (NUCAPT), Evanston, IL 60208-3108, USA
Julie M. Schoenung
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA
Isabella J. van Rooyen
Affiliation:
Idaho National Laboratory, Fuel Performance and Design Department, Idaho Falls, ID 83415-6188, USA
Enrique J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA
*
*Corresponding authors. [email protected]; [email protected]
Get access

Abstract

The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpled discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.

Type
Equipment and Software Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayache, J., Beaunier, L., Boumendil, J., Ehret, G. & Laub, D. (2010). Sample Preparation Handbook for Transmission Electron Microscopy: Techniques. New York, NY: Springer.Google Scholar
Benslim, N., Mehdaoui, S., Aissaoui, O., Benabdeslem, M., Bouasla, A., Bechiri, L., Otmani, A. & Portier, X. (2010). XRD and TEM characterizations of the mechanically alloyed CuIn0.5Ga0.5Se2 powders. J Alloy Compd 489, 437440.CrossRefGoogle Scholar
Carr, M.J. (1985). A method for preparing powdered specimens for transmission electron-microscopy. J Electron Microsc Tech 2, 439443.Google Scholar
Chen, I.W. & Wang, X.H. (2000). Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168171.Google Scholar
Chung, K.H., Lee, J., Rodriguez, R. & Lavernia, E.J. (2002). Grain growth behavior of cryomilled INCONEL 625 powder during isothermal heat treatment. Metall Mater Trans A 33, 125134.CrossRefGoogle Scholar
Danaie, M. & Mitlin, D. (2009). TEM analysis and sorption properties of high-energy milled MgH2 powders. J Alloy Compd 476, 590598.Google Scholar
Gatan Inc. (2003). Model 601.07000 cross section kit. Available at http://www.gatan.com/pdf/CrossSectional Kit.pdf.Google Scholar
Guilemany, J.M., Nutting, J., Urban, M. & dePaco, J.M. (1997). Specimen preparation method for the characterization in the transmission electron microscope of novel cermet powders used in thermal spraying processes. Mater Charact 38, 149154.Google Scholar
Hashemi-Sadraei, L., Mousavi, S.E., Vogt, R., Li, Y., Zhang, Z., Lavernia, E.J. & Schoenung, J.M. (2011). Influence of nitrogen content on thermal stability and grain growth kinetics of cryomilled Al nanocomposites. Metall Mater Trans A 43, 747756.Google Scholar
He, J., Ye, J., Lavernia, E.J., Matejczyk, D., Bampton, C. & Schoenung, J.M. (2004). Quantitative analysis of grain size in bimodal powders by X-ray diffraction and transmission electron microscopy. J Mater Sci 39, 69576964.Google Scholar
He, J.H., Chung, K.H., Liao, X.Z., Zhu, Y.T. & Lavernia, E.J. (2003). Mechanical milling-induced deformation twinning in Fcc materials with high stacking fault energy. Metall Mater Trans A 34, 707712.Google Scholar
Hoffmann, J., Klimenkov, M., Lindau, R. & Rieth, M. (2012). TEM study of mechanically alloyed ODS steel powder. J Nucl Mater 428, 165169.Google Scholar
Huang, J.Y., He, A.Q., Wu, Y.K. & Ye, H.Q. (1994 a). A new technique for specimen preparation for transmission electron-microsope studies of mechanically alloyed powders. J Mater Sci Lett 13, 12011203.Google Scholar
Huang, J.Y., Liao, X.Z., Zhu, Y.T., Zhou, F. & Lavernia, E.J. (2003). Grain boundary structure of nanocrystalline Cu processed by cryomilling. Philos Mag 83, 14071419.Google Scholar
Huang, J.Y., Wu, Y.K. & Ye, H.Q. (1994 b). A novel technique for specimen preparation of metal or ceramic powders for TEM or HREM observations. Mater Lett 21, 167170.Google Scholar
Ipus, J.J., Blázquez, J.S., Conde, A. & Lozano-Pérez, S. (2010). Microstructural characterization by TEM techniques of mechanically alloyed FeNbGe powders. J Alloy Compd 505, 8690.Google Scholar
Katz, E. & Willner, I. (2004). Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Edit 43, 60426108.CrossRefGoogle ScholarPubMed
Kitano, Y., Fujikawa, Y., Kamino, T., Yaguchi, T. & Saka, H. (1995). TEM observation of micrometer-sized Ni powder particles thinned by FIB cutting technique. J Electron Microsc 44, 410413.Google Scholar
Li, J.F., Wang, K., Zhang, B.P. & Zhang, L.M. (2006). Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89, 706709.CrossRefGoogle Scholar
Liao, X.Z., Huang, J.Y., Zhu, Y.T., Zhou, F. & Lavernia, E.J. (2003 a). Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy. Philos Mag 83, 30653075.Google Scholar
Liao, X.Z., Zhou, F., Lavernia, E.J., Srinivasan, S.G., Baskes, M.I., He, D.W. & Zhu, Y.T. (2003 b). Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl Phys Lett 83, 632.Google Scholar
Lim, W.Y., Sukedai, E., Hida, M. & Kaneko, K. ( 1992). A specimen preparatrion of Ti-Mo alloy for electron-microscopy using Ni-plating method and observation of lattice images. Mater Charact 88–90, 105112.Google Scholar
Lin, Y., Yao, B., Zhang, Z., Li, Y., Sohn, Y., Schoenung, J.M. & Lavernia, E.J. (2012). Strain energy during mechanical milling: Part II. experimental. Metall Mater Trans A 43, 42584265.CrossRefGoogle Scholar
Litynska-Dobrzynska, L., Dutkiewicz, J., Maziarz, W. & Rogal, L. (2010). TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition. J Microsc 237, 506510.Google Scholar
Liu, D., Xiong, Y., Li, Y., Topping, T.D., Zhou, Y., Haines, C., Paras, J., Martin, D., Kapoor, D., Schoenung, J.M. & Lavernia, E.J. (2012). Spark plasma sintering of nanostructured aluminum: Influence of tooling material on microstructure. Metall Mater Trans A 44, 19081916.CrossRefGoogle Scholar
Ma, K.K., Wen, H.M., Hu, T., Topping, T.D., Isheim, D., Seidman, D.N., Lavernia, E.J. & Schoenung, J.M. (2014). Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62, 141155.CrossRefGoogle Scholar
Montone, A. & Antisari, M.V. (2003). A new method for preparing powders for transmission electron microscopy examination. Micron 34, 7983.Google Scholar
Prenitzer, B.I., Giannuzzi, L.A., Newman, K., Brown, S.R., Irwin, R.B., Shofner, T.L. & Stevie, F.A. (1998). Transmission electron microscope specimen preparation of Zn powders using the focused ion beam lift-out technique. Metall Mater Trans A 29, 23992406.Google Scholar
Rea, K.E., Agarwal, A., McKechnie, T. & Seal, S. (2005). FIB cross-sectioning of a single rapidly solidified hypereutectic Al-Si powder particle for HRTEM. Microsc Res Tech 66, 1016.CrossRefGoogle ScholarPubMed
Shipway, A.N., Katz, E. & Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 1, 1852.Google Scholar
Suryanarayana, C. (2001). Mechanical alloying and milling. Prog Mater Sci 46, 1184.Google Scholar
Tang, W., Wu, Y.Q., Dennis, K.W., Kramer, M.J., Anderson, I.E. & McCallum, R.W. (2007). Comparison of microstructure and magnetic properties of gas-atomized and melt-spun MRE-Fe-Co-M-B (MRE=Y+Dy+Nd, M=Zr+TiC). J Appl Phys 101, 09K510-109K510-3.CrossRefGoogle Scholar
Thornton, J.J., Han, B.Q. & Lavernia, E.J. (2007). Grain growth in cryomilled Ni powder during degassing. Metall Mater Trans A 38, 13431350.CrossRefGoogle Scholar
Wei, L.Y. & Li, T. (1997). Ultramicrotomy of powder material for TEM/STEM study. Microsc Res Tech 36, 380381.Google Scholar
Wen, H., Dong, S., He, P., Wang, Z., Zhou, H. & Zhang, X. (2007). Sol-gel synthesis and characterization of ytterbium silicate powders. J Am Ceram Soc 90, 40434046.Google Scholar
Wen, H.M. & Lavernia, E.J. (2012). Twins in cryomilled and spark plasma sintered Cu–Zn–Al. Scripta Mater 67, 245248.Google Scholar
Wen, H.M., Topping, T.D., Isheim, D., Seidman, D.N. & Lavernia, E.J. (2013). Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater 61, 27692782.CrossRefGoogle Scholar
Wen, H.M., Zhao, Y.H., Li, Y., Ertorer, O., Nesterov, K.M., Islamgaliev, R.K., Valiev, R.Z. & Lavernia, E.J. (2010). High-pressure torsion-induced grain growth and detwinning in cryomilled Cu powders. Philos Mag 90, 45414550.Google Scholar
Wen, H.M., Zhao, Y.H., Zhang, Z.H., Ertorer, O., Dong, S.M. & Lavernia, E.J. (2011). The influence of oxygen and nitrogen contamination on the densification behavior of cryomilled copper powders during spark plasma sintering. J Mater Sci 46, 30063012.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy—A Textbook for Materials Science. New York, NY: Springer.Google Scholar
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy—A Textbook for Materials Science. New York, NY: Springer.Google Scholar
Witkin, D.B. & Lavernia, E.J. (2006). Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51, 160.Google Scholar
Xiao, H., Liu, R., Ma, H., Lin, Z., Ma, J., Zong, F. & Mei, L. (2008). Thermal stability of GaN powders investigated by XRD, XPS, PL, TEM, and FT-IR. J Alloy Compd 465, 340343.CrossRefGoogle Scholar
Xu, Q., Kumar, V., De Kruijff, T., Jansen, J. & Zandbergen, H.W. (2008). Preparation of TEM samples for hard ceramic powders. Ultramicroscopy 109, 813.Google Scholar
Yang, X.Y., Wu, Y.K. & Ye, H.Q. (2001). High-resolution electron microscopy observations of microplastic fracture in SiC under ball milling at room temperature. Philos Mag Lett 81, 18.CrossRefGoogle Scholar
Yang, Z.Q., He, L.L. & Ye, H.Q. (2002). The effect of ball milling on the microstructure of ceramic AlN. Mater Sci Eng A 323, 354357.Google Scholar
Yoshioka, T., Kawasaki, M., Yamamatsu, J., Nomura, T., Isshiki, T. & Shiojiri, M. (1997). A preparation method of sections of fine particles and cross-sectional transmission electron microscopy of Ni powder. J Electron Microsc 46, 293301.Google Scholar
Zheng, B., Ertorer, O., Li, Y., Zhou, Y., Mathaudhu, S.N., Tsao, C.Y.A. & Lavernia, E.J. (2011). High strength, nano-structured Mg–Al–Zn alloy. Mater Sci Eng A 528, 21802191.Google Scholar
Zhou, F., Lee, J., Dallek, S. & Lavernia, E.J. (2001). High grain size stability of nanocrystalline Al prepared by mechanical attrition. J Mater Res 16, 34513458.Google Scholar
Zhou, F., Liao, X.Z., Zhu, Y.T., Dallek, S. & Lavernia, E.J. (2003 a). Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater 51, 27772791.Google Scholar
Zhou, F., Nutt, S.R., Bampton, C.C. & Lavernia, E.J. (2003 b). Nanostructure in an Al-Mg-Sc alloy processed by low-energy ball milling at cryogenic temperature. Metall Mater Trans A 34, 19851992.CrossRefGoogle Scholar