Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:29:12.178Z Has data issue: false hasContentIssue false

An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography

Published online by Cambridge University Press:  06 February 2019

Zirong Peng
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Yifeng Lu*
Affiliation:
Database Systems and Data Mining Group, Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 München, Germany
Constantinos Hatzoglou
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM, 76000 Rouen, France
Alisson Kwiatkowski da Silva
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Francois Vurpillot
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM, 76000 Rouen, France
Dirk Ponge
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Baptiste Gault*
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
*
*Author for correspondence: Yifeng Lu, E-mail: [email protected]; Baptiste Gault, E-mail: [email protected]
*Author for correspondence: Yifeng Lu, E-mail: [email protected]; Baptiste Gault, E-mail: [email protected]
Get access

Abstract

We introduce an efficient, automated computational approach for analyzing interfaces within atom probe tomography datasets, enabling quantitative mapping of their thickness, composition, as well as the Gibbsian interfacial excess of each solute. Detailed evaluation of an experimental dataset indicates that compared with the composition map, the interfacial excess map is more robust and exhibits a relatively higher resolution to reveal compositional variations. By field evaporation simulations with a predefined emitter mimicking the experimental dataset, the impact of trajectory aberrations on the measurement of the thickness, composition, and interfacial excess of the decorated interface are systematically analyzed and discussed.

Type
Data Analysis
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blavette, D, Vurpillot, F, Pareige, P & Menand, A (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.Google Scholar
Cairney, JM, Rajan, K, Haley, D, Gault, B, Bagot, PAJ, Choi, P-P, Felfer, PJ, Ringer, SP, Marceau, RKW & Moody, MP (2015). Mining information from atom probe data. Ultramicroscopy 159, 324337.Google Scholar
Cantwell, PR, Ma, S, Bojarski, SA, Rohrer, GS & Harmer, MP (2016). Expanding time—temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering. Acta Mater 106, 7886.Google Scholar
Cantwell, PR, Tang, M, Dillon, SJ, Luo, J, Rohrer, GS & Harmer, MP (2014). Grain boundary complexions. Acta Mater 62, 148.Google Scholar
Chellali, MR, Balogh, Z, Bouchikhaoui, H, Schlesiger, R, Stender, P, Zheng, L & Schmitz, G (2012). Triple junction transport and the impact of grain boundary width in nanocrystalline Cu. Nano Lett 12, 34483454.Google Scholar
Chookajorn, T, Murdoch, HA & Schuh, CA (2012). Design of stable nanocrystalline alloys. Science 337, 951 LP-951954.Google Scholar
De Geuser, F, Lefebvre, W, Danoix, F, Vurpillot, F, Forbord, B & Blavette, D (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interface Anal 39, 268272.Google Scholar
Dillon, SJ, Tang, M, Carter, WC & Harmer, MP (2007). Complexion: A new concept for kinetic engineering in materials science. Acta Mater 55, 62086218.Google Scholar
Ester, M, Kriegel, H-P, Sander, J & Xu, X (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining 226231.Google Scholar
Felfer, P, Ceguerra, A, Ringer, S & Cairney, J (2013). Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy 132, 100106.Google Scholar
Felfer, P, Scherrer, B, Demeulemeester, J, Vandervorst, W & Cairney, JM (2015). Mapping interfacial excess in atom probe data. Ultramicroscopy 159, 438444.Google Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York, NY: Springer New York.Google Scholar
Gault, B, Moody, MP, de Geuser, F, Haley, D, Stephenson, LT & Ringer, SP (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95, 034103.Google Scholar
Gibson, MA & Schuh, CA (2015). Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater 95, 145155.Google Scholar
Gruber, M, Vurpillot, F, Bostel, A & Deconihout, B (2011). Field evaporation: A kinetic Monte Carlo approach on the influence of temperature. Surf Sci 605, 20252031.Google Scholar
Hagége, S, Carter, CB, Cosandey, F & Sass, SL (1982). The variation of grain boundary structural width with misorientation angle and boundary plane. Philos Mag A 45, 723740.Google Scholar
Harmer, MP (2011). The phase behavior of interfaces. Science 332, 182183.Google Scholar
Hatzoglou, C, Radiguet, B & Pareige, P (2017). Experimental artefacts occurring during atom probe tomography analysis of oxide nanoparticles in metallic matrix: Quantification and correction. J Nucl Mater 492, 279291.Google Scholar
Herbig, M, Raabe, D, Li, YJ, Choi, P, Zaefferer, S & Goto, S (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.Google Scholar
Hofmann, S (2013). Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin: Springer.Google Scholar
Keast, VJ & Williams, DB (2001). Grain boundary chemistry. Curr Opin Solid State Mater Sci 5, 2330.Google Scholar
Kelly, TF & Miller, MK (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.Google Scholar
Khalajhedayati, A, Pan, Z & Rupert, TJ (2016). Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun 7, 10802.Google Scholar
Kirchheim, R (2002). Grain coarsening inhibited by solute segregation. Acta Mater 50, 413419.Google Scholar
Kirchheim, R (2007). Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater 55, 51295138.Google Scholar
Krakauer, BW & Seidman, DN (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48, 67246727.Google Scholar
Kundu, A, Asl, KM, Luo, J & Harmer, MP (2013). Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr Mater 68, 146149.Google Scholar
Kuzmina, M, Herbig, M, Ponge, D, Sandlobes, S & Raabe, D (2015). Linear complexions: Confined chemical and structural states at dislocations. Science 349, 10801083.Google Scholar
Kuzmina, M, Ponge, D & Raabe, D (2015). Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel. Acta Mater 86, 182192.Google Scholar
Kwiatkowski da Silva, A, Ponge, D, Peng, Z, Inden, G, Lu, Y, Breen, A, Gault, B & Raabe, D (2018). Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat Commun 9, 1137.Google Scholar
Langmuir, I (1918). The adsorption of gases on plane surfaces of glass. J Am Chem Soc 40, 13611403.Google Scholar
Larson, D, Prosa, T & Kelly, T (2013 a). Local Electrode Atom Probe Tomography—A User's Guide. New York: Springer.Google Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013 b). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247.Google Scholar
Larson, DJ, Prosa, TJ, Geiser, BP & Egelhoff, WF (2011). Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 111, 506511.Google Scholar
Lejcek, P (2010). Grain Boundary Segregation in Metals. Berlin: Springer.Google Scholar
Lejček, P, Šob, M & Paidar, V (2017). Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog Mater Sci 87, 83139.Google Scholar
Luo, J, Cheng, H, Asl, KM, Kiely, CJ & Harmer, MP (2011). The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333, 17301733.Google Scholar
Marquis, EA, Geiser, BP, Prosa, TJ & Larson, DJ (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241, 225233.Google Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci, Eng R, Rep 69, 3762.Google Scholar
Marquis, EA & Vurpillot, F (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14, 561570.Google Scholar
Martin, AJ, Weng, W, Zhu, Z, Loesing, R, Shaffer, J & Katnani, A (2016). Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI. Ultramicroscopy 161, 105109.Google Scholar
Maugis, P & Hoummada, K (2016). A methodology for the measurement of the interfacial excess of solute at a grain boundary. Scr Mater 120, 9093.Google Scholar
McLean, D (1957). Grain Boundaries in Metals. Oxford: Clarendon Press.Google Scholar
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography. Boston, MA: Springer US.Google Scholar
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.Google Scholar
Mistler, RE & Coble, RL (1974). Grain-boundary diffusion and boundary widths in metals and ceramics. J Appl Phys 45, 15071509.Google Scholar
Mogensen, M, Sammes, NM & Tompsett, GA (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 6394.Google Scholar
Pearson, K (1901). LIII. On lines and planes of closest fit to systems of points in space. Philos Mag J Sci 2, 559572.Google Scholar
Peng, Z, Rohwerder, M, Choi, P-P, Gault, B, Meiners, T, Friedrichs, M, Kreilkamp, H, Klocke, F & Raabe, D (2017). Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide. Corros Sci 120, 113.Google Scholar
Pennycook, SJ & Nellist, PD (Eds.) (2011). Scanning Transmission Electron Microscopy: Imaging and Analysis. New York, NY: Springer New York.Google Scholar
Prokoshkina, D, Esin, VA, Wilde, G & Divinski, SV (2013). Grain boundary width, energy and self-diffusion in nickel: Effect of material purity. Acta Mater 61, 51885197.Google Scholar
Raabe, D, Herbig, M, Sandlöbes, S, Li, Y, Tytko, D, Kuzmina, M, Ponge, D & Choi, P-P (2014). Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18, 253261.Google Scholar
Ramgopal, T, Gouma, PI & Frankel, GS (2002). Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150. Corrosion 58, 687697.Google Scholar
Rupert, TJ (2016). The role of complexions in metallic nano-grain stability and deformation. Curr Opin Solid State Mater Sci 20, 257267.Google Scholar
Seah, MP (1980). Grain boundary segregation. J Phys F Met Phys 10, 10431064.Google Scholar
Stephenson, LT, Moody, MP, Liddicoat, PV & Ringer, SP (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13, 448463.Google Scholar
Talbot, E, Larde, R, Gourbilleau, F, Dufour, C & Pareige, P (2009). Si nanoparticles in SiO2: An atomic scale observation for optimization of optical devices. Epl 87, 26004.Google Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Thuvander, M & Andren, HO (2000). APFIM studies of grain and phase boundaries: A review. Mater Charact 44, 87100.Google Scholar
Vurpillot, F, Bostel, A & Blavette, D (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.Google Scholar
Vurpillot, F, Bostel, A, Cadel, E & Blavette, D (2000). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84, 213224.Google Scholar
Vurpillot, F, Gault, B, Geiser, BP & Larson, DJ (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.Google Scholar
Vurpillot, F, Larson, D & Cerezo, A (2003). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interface Anal 36, 552558.Google Scholar
Williams, DB & Carter, CB (2009). Transmission Electron Microscopy: A Textbook for Materials Science. Boston, MA: Springer US.Google Scholar
Yao, L, Ringer, SP, Cairney, JM & Miller, MK (2013). The anatomy of grain boundaries: Their structure and atomic-level solute distribution. Scr Mater 69, 622625.Google Scholar