Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T11:26:44.073Z Has data issue: false hasContentIssue false

An Analytical Technique to Extract Surface Information of Negatively Stained or Heavy-Metal Shadowed Organic Materials within the TEM

Published online by Cambridge University Press:  10 April 2013

Nadejda B. Matsko*
Affiliation:
Graz Centre for Electron Microscopy, Graz, Austria
Ilse Letofsky-Papst
Affiliation:
Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz, Austria
Mihaela Albu
Affiliation:
Graz Centre for Electron Microscopy, Graz, Austria
Vikas Mittal
Affiliation:
Chemical Engineering Department, ThePetroleum Institute, Abu Dhabi, UAE
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Using a series of uranyl acetate stained or platinum-palladium shadowed organic samples, an empirical analytical method to extract surface information from energy-filtered transmission electron microscopy (EFTEM) images is described. The distribution of uranium or platinum-palladium atoms, which replicate the sample surface topography, have been mathematically extracted by dividing the image acquired in the valence bulk plasmon energy region (between 20 and 30 eV) by the image acquired at the carbon K ionization edge (between 284 and 300 eV). The resulting plasmon-to-carbon ratio (PCR) image may be interpreted as a precise metal replica of the sample surface. In contrast to conventional EFTEM elemental mapping, including an absolute quantification approach, this technique can be applied to 200–600 nm thick organic samples. A combination of conventional TEM and PCR imaging allows one to detect complementary transmission and topographical information with nanometer precision of the same area of carbon-based samples. The advantages and limitations of PCR imaging are highlighted.

Type
Equipment and Techniques Development: Biological
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Aronova, M.A., Kim, Y.C., Pivovarova, N.B., Andrews, S.B. & Leapman, R.D. (2009). Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens. Ultramicroscopy 109, 201212.CrossRefGoogle ScholarPubMed
Baumeister, W., Grimm, R. & Walz, J. (1999). Electron tomography of molecules and cells. Trends Cell Biol 9, 8185.CrossRefGoogle ScholarPubMed
Brenner, S. & Horne, R.W. (1959). A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34, 103110.CrossRefGoogle ScholarPubMed
Channing, C.A. (2004). Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS ATLAS. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. Google Scholar
Daniels, H.R., Brydson, R., Brown, A. & Rand, B. (2003). Quantitative valence plasmon mapping in TEM: Viewing physical properties at the nanoscale. Ultramicroscopy 96, 547558.CrossRefGoogle ScholarPubMed
De Rosier, D.J. & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130134.CrossRefGoogle ScholarPubMed
Egerton, R.F. (2009). Electron energy-loss spectroscopy in TEM. Rep Prog Phys 72, 125.CrossRefGoogle Scholar
Egerton, R. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.CrossRefGoogle Scholar
Gilman, J.J. (1999). Plasmons at shock fronts. Philos Mag B 79, 643654.CrossRefGoogle Scholar
Gross, H. (1987). High resolution metal replication of freeze-dried specimens. In Cryotechniques in Biological Electron Microscopy, Steinbrecht, R.A. & Zierold, K. (Eds.), pp. 205215. Berlin: Springer.CrossRefGoogle Scholar
Hayat, M.A. (2000). Principles and Techniques of Electron Microscopy: Biological Application. Cambridge, UK: Cambridge University Press.Google Scholar
Hayat, M.A. & Miller, S.E. (1990). Negative Staining. New York: McGraw-Hill.Google Scholar
Hofer, F., Grogger, W., Kothleitner, G. & Warbichler, P. (1997). Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67, 83103.CrossRefGoogle Scholar
Howe, J.M. & Oleshko, V.P. (2004). Application of valence electron energy-loss spectroscopy and plasmon energy mapping for determining material properties at the nanoscale. J Electron Microsc (Tokyo) 53(4), 339351.CrossRefGoogle ScholarPubMed
Klug, A. (1999). The tobacco mosaic virus particle: Structure and assembly. Philos Trans R Soc Lond B 354, 531535.CrossRefGoogle ScholarPubMed
Leapman, R.D. (1986). Microbeam Analysis. San Francisco, CA: San Francisco Press.Google Scholar
Magonov, S. & Reneker, D. (1997). Characterization of polymer surfaces with atomic force microscopy. Annu Rev Mater Sci 27, 175222.CrossRefGoogle Scholar
Matsko, N. (2007). Atomic force microscopy applied to study macromolecular content of embedded biological material. Ultramicroscopy 107, 95105.CrossRefGoogle ScholarPubMed
Matsko, N. & Mueller, M. (2004). AFM of biological material embedded in epoxy resin. J Struct Biol 146, 334343.CrossRefGoogle ScholarPubMed
Matsko, N. & Mueller, M. (2005). Epoxy resin as fixative during freeze-substitution. J Struct Biol 152, 92103.CrossRefGoogle ScholarPubMed
Mittal, V. & Matsko, N.B. (2012). Analytical Imaging Techniques for Soft Matter Characterization. Heidelberg: Springer.CrossRefGoogle Scholar
Oleshko, V.P., Murayama, M. & Howe, J.M. (2002). Use of plasmon spectroscopy to evaluate the mechanical properties of materials at the nanoscale. Microsc Microanal 8(4), 350364.CrossRefGoogle ScholarPubMed
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102, 2736.CrossRefGoogle ScholarPubMed
Severs, N. & Robenek, H. (2008). Freeze-fracture cytochemistry in cell biology. Methods Cell Biol 88, 181204.CrossRefGoogle ScholarPubMed
Severs, N.J. (2007). Freeze-fracture electron microscopy. Nat Protocol 2, 547576.CrossRefGoogle ScholarPubMed
Shuman, H., Chang, C.F. & Somlyo, A.P. (1986). Elemental imaging and resolution in energy-filtered conventional electron microscopy. Ultramicroscopy 19(2), 121133.CrossRefGoogle ScholarPubMed
Wendell, M.S. (1964). The isolation and properties of crystalline tobacco mosaic virus. In Nobel Lectures, Chemistry 1942–1962. pp. 137157. New York: Elsevier Publishing Company.Google Scholar
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy: A Textbook for Materials Science. Berlin: Springer.CrossRefGoogle Scholar