Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:46:14.042Z Has data issue: false hasContentIssue false

Advanced Electron Microscopy Characterization of Nanostructured Heterogeneous Catalysts

Published online by Cambridge University Press:  22 January 2004

Jingyue Liu
Affiliation:
Science & Technology, Monsanto Company, 800 N. Lindbergh Blvd., U1E, St. Louis, Missouri 63167, USA
Get access

Abstract

Heterogeneous catalysis is one of the oldest nanosciences. Although model catalysts can be designed, synthesized, and, to a certain degree, characterized, industrial heterogeneous catalysts are often chemically and physically complex systems that have been developed through many years of catalytic art, technology, and science. The preparation of commercial catalysts is generally not well controlled and is often based on accumulated experiences. Catalyst characterization is thus critical to developing new catalysts with better activity, selectivity, and/or stability. Advanced electron microscopy, among many characterization techniques, can provide useful information for the fundamental understanding of heterogeneous catalysis and for guiding the development of industrial catalysts. In this article, we discuss the recent developments in applying advanced electron microscopy techniques to characterizing model and industrial heterogeneous catalysts. The importance of understanding the catalyst nanostructure and the challenges and opportunities of advanced electron microscopy in developing nanostructured catalysts are also discussed.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajayan, P.M. & Marks, L.D. (1988). Quasimelting and phases of small particles. Phys Rev Lett 60, 585587.Google Scholar
Allpress, J.G. & Sanders, J.V. (1967). Structure and orientation of crystals in deposits of metals on mica. Surf Sci 7, 478483.Google Scholar
Barry, J.C., Bursill, L.A., & Sanders, A.V. (1985). Electron microscope images of icosahedral and cuboctahedral (fcc. packing) clusters of atoms. Aust J Phys 38, 437448.Google Scholar
Batson, P.E. (1993). Simultaneous STEM imaging and electron-energy-loss spectroscopy with atomic column sensitivity. Nature 366, 727728.Google Scholar
Batson, P.E., Dellby, N., & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Bednarova, L., Lyman, C.E., Rytter, E., & Holmen, A. (2002). Effect of support on the size and composition of highly dispersed Pt-Sn particles. J Catal 211, 335346.Google Scholar
Bernal, S., Botana, F.J., Calvino, J.J., Lopez-Cartes, C., Perez-Omil, J.A., & Rodriguez-Izquierdo, J.M. (1998). The interpretation of HREM images of supported metal catalysts using image simulation: Profile view images. Ultramicroscopy 72, 135164.Google Scholar
Bernal, S., Calvino, J.J., Cauqui, M.A., Cifredo, G.A., Jobacho, A., & Rodriguez-Izquierdo, J.M. (1993). Metal-support interaction phenomena in rhodium/ceria and rhodium/titania catalysts: Comparative study by high-resolution transmission electron spectroscopy. Appl Catal A: General 99, 18.Google Scholar
Bernal, S., Calvino, J.J., Cauqui, M.A., Gatica, J.M., Larese, C., Lopez-Cartes, C., Perez-Omil, J.A., & Pintado, J.M. (1999). Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal Today 50, 175206.Google Scholar
Boyes, E.D. (1998). High-resolution and low-voltage SEM imaging and chemical microanalysis. Adv Mater 10, 12771280.Google Scholar
Browning, N.D., Arslan, I., Ito, Y., James, E M., Klie, R.F., Moeck, P., Topuria, T., & Xin, Y. (2001). Application of atomic scale STEM techniques to the study of interfaces and defects in materials. J Electron Microsc 50, 205218.Google Scholar
Browning, N.D., Wallis, D.J., Nellist, P.D., & Pennycook, S.J. (1997). EELS in the STEM: Determination of materials properties on the atomic scale. Micron 28, 333348.Google Scholar
Cowley, J.M. (1999). Electron nanodiffraction. Microsc Res Tech 46, 7597.Google Scholar
Crew, A.V., Wall, J., & Langmore, J. (1970). Visibility of a single atom. Science 168, 13381340.Google Scholar
Crozier, P.A., Tsen, S.-C.Y., Lopes-Cartes, C., Liu, J., & Calvino, J.J. (1999). Factors affecting the accuracy of lattice spacing determination by HREM in nanometre-sized Pt particles. J Electron Microsc 48, 10151024.Google Scholar
Darji, R. & Howie, A. (1997). Scattering corrections in small particle imaging. Micron 28, 95100.Google Scholar
Datye, A.K. & Smith, D.J. (1992). The study of heterogeneous catalysts by high-resolution electron microscopy. Catal Rev Sci Eng 34, 129178.Google Scholar
Ertl, G. (2002). Heterogeneous catalysis on atomic scale. J Mol Catal A: Chemical 3443, 112.Google Scholar
Gai, P.L. (1998). Direct probing of gas molecule-solid catalyst interactions on the atomic scale. Adv Mater 10, 12591263.Google Scholar
Gai, P.L. (2002). Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Top Catal 21, 161173.Google Scholar
Gai, P.L., Goringe, M.J., & Barry, J.C. (1986). HREM image contrast from supported small metal particles. J Microsc 142, 924.Google Scholar
Gai, P.L., Kourtakis, K., & Ziemecki, S. (2000). In situ real-time environmental high resolution electron microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in nylon 6,6. Microsc Microanal 6, 335342.Google Scholar
GaiBoyes, P.L. (1992). Defects in oxide catalysts-fundamental-studies of catalysis in action. Catal Rev Sci Eng 34, 154.Google Scholar
Garzon, I.L., Michaelian, K., Beltran, M.R., Posada-Amarillas, A., Ordejon, P., Artacho, E., Sanches-Portal, D., & Soler, J.M. (1998). Lowest energy structures of gold nanoclusters. Phys Rev Lett 81, 16001603.Google Scholar
Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H., & Jacobsen, C.J.H. (2001). Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 15081510.Google Scholar
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., & Topsoe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.Google Scholar
Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catal Today 36, 153166.Google Scholar
Heinemann, K. & Soria, F. (1986). On the detection and size classification of nanometer-size metal particles on amorphous substrates. Ultramicroscopy 20, 114.Google Scholar
Ino, S. (1966). Epitaxial growth of metals on rock salt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultra-high vacuum. J Phys Soc Jpn 21, 346362.Google Scholar
Jose-Yacaman, M. & Avalos-Borja, M. (1992). Electron microscopy of metallic nano particles using high- and medium-resolution techniques. Catal Rev Sci Eng 34, 55127.Google Scholar
Jose-Yacamann, M., Diaz, G., & Gomez, A. (1995). Electron microscopy of catalysts; the present, the future and the hopes. Catal Today 32, 161199.Google Scholar
Jose-Yacaman, M., Marin-Almazo, M., & Ascencio, J.A. (2001). High resolution TEM studies on palladium nanoparticles. J Mol Catal A: Chemical 173, 6174.Google Scholar
Joy, D.C. & Joy, C.S. (1996). Low voltage scanning electron microscopy. Micron 27, 247263.Google Scholar
Joy, D.C. & Pawley, J.B. (1992). High-resolution scanning electron microscopy. Ultramicroscopy 47, 80100.Google Scholar
Klie, R.F., Disko, M.M., & Browning, N.D. (2002). Atomic scale observations of the chemistry at the metal-oxide interface in heterogeneous catalysts. J Catal 205, 16.Google Scholar
Liu, J. (1998). Low voltage high-resolution secondary electron microscopy of industrial supported catalysts. In Proceedings of the 14th ICEM: Electron Microscopy, Benavides, H.A.C. & Yacaman, M.J. (Eds). Vol. 2, pp. 399400. Bristol: Institute of Physics Publishing.
Liu, J. (2000a). Contrast of highly dispersed metal nanoparticles in high-resolution secondary electron and backscattered electron images of supported metal catalysts. Microsc Microanal 6, 388399.Google Scholar
Liu, J. (2000b). High-resolution and low-voltage FE-SEM imaging and microanalysis in materials characterization. Mater Charact 44, 353363.Google Scholar
Liu, J. (2002). HAADF imaging of metal nanoclusters and nanoparticles: Challenges and opportunities. In Proceedings of the 15th International Congress on Electron Microscopy, pp. 499500.
Liu, J. & Cowley, J.M. (1987). High-resolution scanning electron microscopy of surface reactions. Ultramicroscopy 23, 463472.Google Scholar
Liu, J. & Cowley, J.M. (1990). High-angle ADF and high-resolution SE imaging of supported catalyst clusters. Ultramicroscopy 34, 119128.Google Scholar
Liu, J. & Nag, N.K. (2003). Atomic resolution electron spectroscopy investigation of supported catalysts: Pd/TiO2 and Pd-Ni/TiO2. In Proceedings of the 18th North American Catalysis Society Meeting, p. 225.
Liu, J., Ornberg, R.L., & Ebner, J.R. (1997). Studies of supported metal catalysts using low voltage biased secondary electron imaging in a JSM-6320F FE-SEM. Microsc Microanal 3 (Suppl. 2), 11231224.Google Scholar
Liu, J. & Spinnler, G.E. (1994). Observation of the evolution of 55-atom icosahedral Ag clusters by coherent electron nanodiffraction in a UHV STEM. In Proceedings of the Microscopy Society of America, Bailey, G.W. & Garratt-Reed, A.J. (Eds.), pp. 788789. San Francisco: San Francisco Press, Inc.
Logan, A.D., Braunschweig, E., Datye, A.K., & Smith, D.J. (1988). Direct observation of the surfaces of small metal crystallites: Rhodium supported on titania. Lanngmuir 4, 827830.Google Scholar
Logan, A.D., Braunschweig, E., Datye, A.K., & Smith, D.J. (1989). The oxidation of small rhodium metal particles. Ultramicroscopy 31, 132137.Google Scholar
Lyman, C.E. (1986). Digital X-ray imaging of small particles. Ultramicroscopy 20, 11924.Google Scholar
Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., Von Harrach, S., Nicholls, A.W., & Statham, P.J. (1994). High-performance X-ray-detection in a new analytical electron-microscope. J Microsc 176, 8598.Google Scholar
Lyman, C.E., Lakis, R.E., & Stenger, H.G. Jr. (1995). X-ray emission spectrometry of phase separation in Pt-Rh nanoparticles for nitric oxide reduction. Ultramicroscopy 58, 2534.Google Scholar
Lyman, C.E., Lakis, Rollin E., Stenger, H.G., Jr., Totdal, B., & Prestvik, R. (2000). Analysis of alloy nanoparticles. Mikrochim Acta 132, 301308.Google Scholar
Malm, J.O. & O'Keefe, M.A. (1997). Deceptive “lattice spacings” in high-resolution micrographs of metal nanoparticles. Ultramicroscopy 68, 1323.Google Scholar
Marks, L.D. (1994). Experimental studies of small particle structures. Rep Prog Phys 57, 603649.Google Scholar
Marks, L.D. & Smith, D.J. (1981). High-resolution studies of small particles of gold and silver. I. Multiply-twinned particles. J Cryst Growth 54, 425432.Google Scholar
Midgley, P.A., Weyland, M., Thomas, J.M., Gai, P.L., & Boyes, E.D. (2002). Probing the spatial distribution and morphology of supported nanoparticles using Rutherford-scattered electron imaging. Angew Chem Int Ed 41, 38043807.Google Scholar
Muller, D.A. & Mills, M.J. (1999). Electron microscopy: Probing the atomic structure and chemistry of grain boundaries, interfaces, and defects. Mater Sci Eng A 260, 1228.Google Scholar
Nellist, P.D. & Pennycook, S.J. (1996). Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413415.Google Scholar
Oleshko, V.P., Crozier, P.A., Cantrell, R.D., & Westwood, A.D. (2001). In situ real-time environmental TEM of gas phase Ziegler-Natta catalytic polymerization of propylene. J Electron Microsc 51, S27S39.Google Scholar
Silcox, J. (1998). Core-loss EELS. Curr Opin Solid State Mater Sci 3, 336342.Google Scholar
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.Google Scholar
Smith, D.J., Yao, M.H., Allard, L.F., & Datye, A.K. (1995). High-resolution scanning electron microscopy for the characterization of supported catalysts. Catal Lett 31, 5764.Google Scholar
Strongin, D.R., Bare, S.R., & Somorjai, G.A. (1987a). The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J Catal 103, 213215.Google Scholar
Strongin, D.R., Bare, S.R., & Somorjai, G.A. (1987b). The effects of aluminum oxide in restructuring iron single crystal surfaces for ammonia synthesis. J Catal 103, 289301.Google Scholar
Sun, K., Liu, J., & Browning, N.D. (2002a). Correlated atomic resolution microscopy and spectroscopy studies of Sn(Sb)O2 nanophase catalysts. J Catal 205, 266277.Google Scholar
Sun, K., Liu, J., Nag, N.K., & Browning, N.D. (2002b). Studying the metal-support interaction in Pd/γ-Al2O3 catalysts by atomic-resolution electron energy-loss spectroscopy. Catal Lett 84, 193199.Google Scholar
Sun, K., Liu, J., Nag, N.K., & Browning, N.D. (2002c). Atomic scale characterization of supported Pd-Cu/γ-Al2O3 bimetallic catalysts. J Phys Chem B 106, 1223912246.Google Scholar
Tanaka, N., Kimita, H., & Kizuka, T. (1996). Time-resolved high-resolution electron microscopy of surface-diffusion of tungsten atoms on MgO(001) surfaces. J Electron Microsc 45, 113118.Google Scholar
Tehuacanero, S., Herrera, R., Avalos, M., & Jose-Yacaman, M. (1992). High resolution TEM studies of gold and palladium nano-particles. Acta Metall Mater 40, 16631674.Google Scholar
Thomas, J.M., Terasaki, O., Gai, P.L., Zhou, W.Z., & Gonzalez-Calbet, J. (2001). Structural elucidation of microporous and mesoporous catalysts and molecular sieves by high-resolution electron microscopy. Acc Chem Res 34, 583594.Google Scholar
Treacy, M.M.J. & Rice, S.B. (1989). Catalyst particle sizes from Rutherford scattered intensities. J Microscopy 156, 211234.Google Scholar
Tsen, S.C.Y., Crozier, P.A., & Liu, J. (2003). Lattice measurement and alloy compositions in metal and bimetallic nanoparticles. Ultramicroscopy 98, 6372.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum Press.
Yao, M.H. & Smith, D.J. (1994). HREM image simulations for small-particle catalysts on crystalline supports. J Microsc 175, 252265.Google Scholar