Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T14:09:26.558Z Has data issue: true hasContentIssue false

X-ray Microanalysis of a Coated Nonconductive Specimen: Monte Carlo Simulation

Published online by Cambridge University Press:  01 December 2004

Hendrix Demers
Affiliation:
Department of Mining, Metals and Materials Engineering, McGill University, Montréal H3A 2B2, Canada
Raynald Gauvin
Affiliation:
Department of Mining, Metals and Materials Engineering, McGill University, Montréal H3A 2B2, Canada
Get access

Abstract

The microanalysis of nonconductive specimen in a scanning electron microscope is limited by charging effects. Using a charge density model for the electric field buildup in a nonconductive specimen irradiated by electrons, a Monte Carlo simulation method has been applied to alumina (Al2O3). The results show a change in the depth distribution for characteristic and bremsstrahlung X-ray, φ(ρz) curves, and ψ(ρz) curves (with absorption) for both elements' Kα lines. The influence of the electric field on the measured X-ray intensity is shown. The dependency of this influence by the three parameters, electron energy, X-ray energy, and charge density, is clarified.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastin, G.F. & Heijligers, H.J.M. (1991). Nonconductive specimens in the electron probe microanalyzer: A hitherto poorly discussed problem. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), p. 193. New York: Plenum Press.
Bielajew, A. & Rogers, D. (1988). Electron transport in E and B fields. In Monte Carlo Transport of Electrons and Photons, Jenkins, T.M., Nelson, R. & Rindi, A. (Eds.), pp. 421434. New York, London: Plenum Press.
Casnati, E., Tartari, A., & Baraldi, C. (1982). An empirical approach to K-shell ionisation cross section by electrons. J Phys B 15, 155167.Google Scholar
Cazaux, J. (1996). Electron probe microanalysis of insulating materials: Quantification problems and some possible solutions. X-Ray Spectrom 25, 116.Google Scholar
Czyzewski, Z., MacCallum, D.O., Romig, A., & Joy, D.C. (1990). Calculation of Mott scattering cross section. J Appl Phys 68, 30663072.Google Scholar
Demers, H. (2002). Les effets de charges pour un échantillon isolant dans un microscope électronique à balayage. Master's thesis, Université de Sherbrooke.
Gray, C.C., Chapman, J.N., Nicholson, W.A.P., Robertson, B.W., & Ferrier, R.P. (1983). X-ray production in thin films by electrons with energies between 40 and 100 keV: 2—Characteristic cross-sections and the overall X-ray spectrum. X-ray Spectrom 12, 163169.Google Scholar
Henke, B.L., Gullikson, E.M., & Davis, J.C. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92. At Data Nucl Data Tables 54, 181342.Google Scholar
Hovington, P., Drouin, D., & Gauvin, R. (1997). CASINO: A new Monte Carlo code in C language for electron beam interaction—Part I: Description of the program. Scanning 19, 114.Google Scholar
Jbara, O., Portron, B., Mouze, D., & Cazaux, J. (1997). Electron probe microananlysis of insulating oxides: Monte Carlo simulations. X-Ray Spectrom 26, 291302.Google Scholar
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176.Google Scholar
Kanaya, K. & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J Phys D: Appl Phys 5, 4358.Google Scholar
Kotera, M. & Suga, H. (1988). A simulation of keV electron scatterings in a charged-up specimen. J Appl Phys 78, 261268.Google Scholar
Odof, S. (2000). Microanalyse X des Isolants: Simulations de Monte Carlo. Ph.D. thesis, Université de Reims Champagne-Ardenne.
Sorbier, L. (2001). Apport de la Simulation dans l'Optimisation de l'Analyse Quantitative par Microsonde Électronique de Catalyseurs Hétérogènes, Ph.D. thesis, Université de Montpellier II.