Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T19:27:28.408Z Has data issue: false hasContentIssue false

Where Art Thou, Calcium?

Published online by Cambridge University Press:  02 July 2020

A.P. Somlyo*
Affiliation:
Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia
Get access

Extract

Ever since the recognition of calcium as a major intracellular messenger of signal transduction, its subcellular localization and intracellular movements have been intensively sought through electron and light optical methods. Electron probe microanalysis (EPMA), X-ray mapping, electron energy-loss spectroscopy (EELS) and energy-filtered imaging still provide the highest spatial resolution for measuring total calcium, whereas with light optical methods (fluorescent, luminescent and absorbance dyes) free [Ca2+]i can be measured with high sensitivity and time resolution. This presentation will summarize the relationship, whether collision or convergence, between the results of electron and light optical methods, with particular reference to mitochondrial Ca, and consider the potential for further improvements in detection sensitivity and spatial resolution.

Sarcoplasmic and endoplasmic reticulum: Early attempts to quantitate Ca in cellular organelles with EPMA were directed at the sarcoplasmic reticulum (SR) of skeletal muscle, where EPMA could also address questions not amenable to studies of isolated SR.

Type
Quantitative Biological and Materials Microanalysis by Electrons and X-Rays
Copyright
Copyright © Microscopy Society of America 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Somlyo, A.V., Shuman, H. and Somlyo, A.P., J. Cell Biol. 74(1977)828.10.1083/jcb.74.3.828CrossRefGoogle Scholar
Somlyo, A.V.et al., J. Cell Biol. 90(1981)577.10.1083/jcb.90.3.577CrossRefGoogle Scholar
Somlyo, A.V.et al., J. Biol Chem. 260(1985)6801.Google Scholar
Gonzalez-Serratos, H.et al., Proc. Natl. Acad. Sei. USA 75(1978)329.10.1073/pnas.75.3.1329CrossRefGoogle Scholar
Yoshioka, T. and Somlyo, A.P., J. Cell Biol. 99(1984)558.10.1083/jcb.99.2.558CrossRefGoogle Scholar
Bond, M.et al., J. Physiol. 355( 1984a)677.10.1113/jphysiol.1984.sp015445CrossRefGoogle Scholar
Kowarski, D.et al., J. Physiol. 366(1985)153.10.1113/jphysiol.1985.sp015790CrossRefGoogle Scholar
Bond, M.et al., J. Biol. Chem. 262(1987)15630.Google Scholar
Baumann, O.et al., Proc. Natl. Acad. Sei. USA 88(1991)741.Google Scholar
Somlyo, A.P. and Walz, B., J. Physiol. 358(1985)183.10.1113/jphysiol.1985.sp015547CrossRefGoogle Scholar
Leapman, R.D. and Newbury, D.E., Anal. Chem. 65(1993)2409.10.1021/ac00066a003CrossRefGoogle Scholar
Somlyo, A.V.et al., Proc. Natl. Acad. Sei.USA 85(1988)6222.10.1073/pnas.85.16.6222CrossRefGoogle Scholar
Ornberg, R.L., Kuijpers, G.A.J. and Leapman, R.D., J. Biol. Chem. 263(1988)1488.Google Scholar
Wong, J.G.et al., Am. J. Physiol. 261(1991)C1033.10.1152/ajpcell.1991.261.6.C1033CrossRefGoogle Scholar
Nicaise, G.et al., Biol. Cell 75(1992)89.10.1016/0248-4900(92)90128-NCrossRefGoogle Scholar
Foster, M.C.et al., Biophys. J. 64(1993)525.10.1016/S0006-3495(93)81397-3CrossRefGoogle Scholar
Bond, M.et al., J. Physiol. 357(1984b) 185.10.1113/jphysiol.1984.sp015496CrossRefGoogle Scholar
Somlyo, A.P.et al., in Cell Calcium and the Control of Membrane Transport, Rockefeller University Press: New York (1987)77.Google Scholar
LeFurgey, J.R.et al., Ultramicroscopy 24( 1988) 185.10.1016/0304-3991(88)90311-7CrossRefGoogle Scholar
Pozzan, T.et al., Physiol. Rev. 74(1994)595.10.1152/physrev.1994.74.3.595CrossRefGoogle Scholar
Isenberg, G.et al., Cardiovasc. Res. 27(1993)1800.10.1093/cvr/27.10.1800CrossRefGoogle Scholar
Moravec, C.S. and Bond, M., Am. J. Physiol. 260(1991)H989.Google Scholar
Moravec, C.S. and Bond, M., J. Biol. Chem. 267(1992)5310.Google Scholar
Isaacson, M. and Johnson, D.E., Ultramicroscopy 1(1975)33.10.1016/S0304-3991(75)80006-4CrossRefGoogle Scholar
Shuman, H. and Somlyo, A.P., Ultramicroscopy 21(1987)23.10.1016/0304-3991(87)90004-0CrossRefGoogle Scholar
Hendrick, M.J.et al., Can. Res. 52(1992)5391.Google Scholar
Leapman, R.D.et al., Ultramicroscopy 49(1993)225.10.1016/0304-3991(93)90229-QCrossRefGoogle Scholar
Leapman, R.D. and Swyt, C.R., Ultramicroscopy 26(1988)185.10.1016/0304-3991(88)90239-2CrossRefGoogle Scholar
Leapman, R.D. and Swyt, C.R., Ultramicroscopy 26(1988)393.10.1016/0304-3991(88)90239-2CrossRefGoogle Scholar
Wang, Y.Y.et al., Ultramicroscopy 41(1992)11.10.1016/0304-3991(92)90091-WCrossRefGoogle Scholar
Wang, Y.Y.et al., Microbeam Anal. 3(1994)87.Google Scholar
Zhao, L.et al., Ultramicroscopy 48(1993)290.10.1016/0304-3991(93)90103-5CrossRefGoogle Scholar
Tang, Z.et al., J. Microsc. 175(1994)175.10.1111/j.1365-2818.1994.tb03473.xCrossRefGoogle Scholar
Ho, R., Shao, Z. and Somlyo, A.P.., J. Microsc. Soc. Am. 2(1996)87.Google Scholar
Supported by NIH HL48807 and NSF 9204018.Google Scholar