Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T18:16:44.733Z Has data issue: false hasContentIssue false

Variable Resolution Fluctuation Electron Microscopy on Cu-Zr Metallic Glass Using a Wide Range of Coherent STEM Probe Size

Published online by Cambridge University Press:  02 December 2010

Jinwoo Hwang*
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706-1595, USA
P.M. Voyles
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706-1595, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We report variable resolution fluctuation electron microscopy (VRFEM) measurements on Cu64.5Zr35.5 metallic glass acquired using scanning transmission electron microscopy nanodiffraction using coherent probes 0.8 to 11 nm in diameter. The VRFEM results show that medium range atomic order structure of Cu64.5Zr35.5 bulk metallic glass at the ∼1 nm scale has large fluctuations, but the structure becomes almost completely homogeneous at the 11 nm scale. We show that our experimental VRFEM data are consistent with two different models, the pair persistent model and the amorphous/nanocrystal composite model. We also report a new way to filter VRFEM data to eliminate the effect of specimen thickness gradient using high-angle annular dark field images as references.

Type
TEM and STEM Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Argon, A.S. (1979). Plastic deformation in metallic glasses. Acta Metall 27, 4758.CrossRefGoogle Scholar
Bogle, S.N., Nittala, L.N., Tweston, R.D., Voyles, P.M. & Abelson, J.R. (2010). Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy. Ultramicroscopy 110(10), 12731278.CrossRefGoogle Scholar
Fan, L., Paterson, D., McNulty, I., Treacy, M.M.J. & Gibson, J.M. (2007). Fluctuation X-ray microscopy: A novel approach for the structural study of disordered materials. J Microscopy 225(1), 4148.CrossRefGoogle ScholarPubMed
Fischer, H.E., Barnes, A.C. & Salmon, P.S. (2006). Neutron and X-ray diffraction studies of liquids and glasses. Rep Prog Phys 69, 233299.CrossRefGoogle Scholar
Freeman, L.A., Howie, A., Mistry, A.B. & Gaskell, P.H. (1976). Studies of the structure of silicate glasses and amorphous elemental semiconductors by high resolution electron microscopy. In The Structure of Non-Crystalline Materials, Gaskell, P.H. (Ed.), pp. 245251. London: Taylor and Francis.Google Scholar
Gibson, J.M., Treacy, M.M.J. & Voyles, P.M. (2000). Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83, 169178.CrossRefGoogle ScholarPubMed
Greer, A.L. (2009). Metallic glasses on the threshold. Mater Today 12(1-2), 1422.CrossRefGoogle Scholar
Hwang, J., Cao, J. & Voyles, P.M. (2008). Nanometer-scale structural relaxation in Zr-based bulk metallic glass. Mater Res Soc Symp Proc 1048, Z05-04.Google Scholar
Hwang, J., Clausen, A.M., Cao, H. & Voyles, P.M. (2009). Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data. J Mater Res 24(10), 31213129.CrossRefGoogle Scholar
Hÿtch, M.J. & Chevalier, J.P. (1995). On the breakdown of Friedel's Law for coherent microdiffraction from amorphous materials. Ultramicroscopy 58, 114121.CrossRefGoogle Scholar
Lee, B.S., Burr, G.W., Shelby, R.M., Raoux, S., Rettner, C.T., Bogle, S.N., Darmawikarta, K., Bishop, S.G. & Abelson, J.R. (2009). Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980984.CrossRefGoogle ScholarPubMed
Loane, R.F., Kirkland, E.J. & Silcox, J. (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Cryst A 44, 912927.CrossRefGoogle Scholar
Ma, D., Stoica, A.D., Wang, X-L., Lu, Z.P., Xu, M. & Kramer, M. (2009). Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys Rev B 80, 014202.CrossRefGoogle Scholar
Pedersen, U.R., Schrøder, T.B., Dyre, J.C. & Harrowell, P. (2010). Geometry of slow structural fluctuations in a supercooled binary alloy. Phys Rev Lett 104, 105701.CrossRefGoogle Scholar
Rehr, J.J. & Albers, R.C. (2000). Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72(3), 621654.CrossRefGoogle Scholar
Rodenburg, J.M. (1988). Properties of electron microdiffraction patterns from amorphous materials. Ultramicroscopy 25, 329344.CrossRefGoogle Scholar
Rodenburg, J.M. & Rauf, I.A. (1989). A cross-correlation measure of order in “amorphous” indium oxide. Inst Phys Conf Ser 98(5), 119122.Google Scholar
Sheng, H.W., Luo, W.K., Alamgir, F.M., Mai, J.M. & Ma, E. (2006). Atomic packing and short-to-medium-range order in metallic glasses. Nature 439(26), 419425.CrossRefGoogle ScholarPubMed
Stratton, W.G., Hamann, J., Perepezko, J.H., Mao, X., Khare, S.V. & Voyles, P.M. (2005). Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Appl Phys Lett 86, 141910.CrossRefGoogle Scholar
Stratton, W.G. & Voyles, P.M. (2007). Comparison of fluctuations electron microscopy theories and experimental methods. J Phys Cond Mat 19, 455203.CrossRefGoogle Scholar
Stratton, W.G. & Voyles, P.M. (2008). A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727736.CrossRefGoogle ScholarPubMed
Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. (2010). Critical-like behaviour of glass-forming liquids. Nat Mater 9, 324331.CrossRefGoogle ScholarPubMed
Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D.J. & McNulty, I. (2005). Fluctuation microscopy: A probe of medium range order. Rep Prog Phys 68, 28992944.CrossRefGoogle Scholar
Voyles, P.M. (2001). Fluctuation electron microscopy of medium-range order in amorphous silicon. Dissertation. Urbana, IL: University of Illinois at Urbana-Champaign.Google Scholar
Voyles, P.M. & Abelson, J.R. (2003). Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol Energy Mater Sol Cells 78, 85113.CrossRefGoogle Scholar
Voyles, P.M., Gerbi, J.E., Treacy, M.M.J., Gibson, J.M. & Abelson, J.R. (2001a). Increased medium-range order in amorphous silicon with increased substrate temperature. J Non-Cryst Sol 293295, 4552.CrossRefGoogle Scholar
Voyles, P.M. & Muller, D.A. (2002). Fluctuation microscopy in the STEM. Ultramicroscopy 93, 147159.CrossRefGoogle ScholarPubMed
Voyles, P.M., Zotov, N., Nakhmanson, S.M., Drabold, D.A., Gibson, J.M., Treacy, M.M.J. & Keblinski, P. (2001b). Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J Appl Phys 90(9), 44374451.CrossRefGoogle Scholar
Waseda, Y. (2002). Anomalous X-Ray Scattering for Materials Characterization. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Wochner, P., Gutt, C., Autenrieth, T., Demmer, T., Bugaev, V., Ortiz, A.D., Duri, A., Zontone, F., Grübel, G. & Dosch, H. (2009). X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. Proc Natl Acad Sci USA 106(28), 1151111514.CrossRefGoogle ScholarPubMed
Yi, F., Tiemeijer, P. & Voyles, P.M. (2010). Flexible formation of coherent probes on an aberration-corrected STEM with three condensers. J Elec Microsc 59(S1), S15S21.CrossRefGoogle Scholar