Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T07:47:44.488Z Has data issue: false hasContentIssue false

Ultrastructure of the Excretory Organs of Bombus morio (Hymenoptera: Bombini): Bee Without Rectal Pads

Published online by Cambridge University Press:  05 November 2013

Wagner Gonzaga Gonçalves
Affiliation:
Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
Maria do Carmo Queiroz Fialho
Affiliation:
Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil Department of Morphology, Federal University of Amazonas, 69077-000 Manaus, AM, Brazil
Dihego Oliveira Azevedo
Affiliation:
Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
José Cola Zanuncio
Affiliation:
Department of Animal Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
José Eduardo Serrão*
Affiliation:
Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Bumblebees need to keep bodily homeostasis and for that have an efficient system of excretion formed by the Malpighian tubules, ileum, and rectum. We analyzed the excretory organs of Bombus morio, a bee without rectal pads. In addition, we analyzed the rectal epithelium of Melipona quadrifasciata anthidioides which has rectal pads. The Malpighian tubules exhibited two cell types and the ileum four types. However, comparative analysis of the rectum showed that only cells of the anterior region of the rectal epithelium of B. morio are structurally distinct. We suggest that cells of the Malpighian tubules of B. morio have an excretory feature and that cells of ileum have different functions, such as ion absorption and water, organic compound, and protein secretion. In addition, only the anterior region of the rectum of B. morio showed characteristic absorption. We suggest that Malpighian tubules participate in the excretion of solutes and that the ileum and rectal epithelium are responsible for homeostasis of water and solutes, compensating for the absence of rectal papillae. These results contribute to our understanding of the morphophysiology of the excretory organs of bees without rectal pads.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arab, A. & Caetano, F.H. (2002). Segmental specializations in the Malpighian tubules of the fire ant Solenopsis saevissima Forel 1904 (Myrmicinae): An electron microscopical study. Arth Struct & Dev 30, 281292.Google Scholar
Bell, D.M. & Anstee, J.H. (1977). A study of the Malpighian tubules of Locusta migratoria by scanning and transmission electron microscopy. Micron 8, 123134.Google Scholar
Berridge, M.J. & Gupta, B.L. (1967). Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly, Calliphora . J Cell Sci 2, 89112.Google Scholar
Berridge, M.J. & Oschmann, J.L. (1969). A structural basis for fluid secretion by Malpighian tubules. Tissue Cell 1, 247272.Google Scholar
Beyenbach, K.W., Skaer, H. & Dow, J.A. (2010). The developmental, molecular, and transport biology of Malpighian tubules. Annu Rev Entomol 55, 351374.Google Scholar
Bradley, T.J. (1983). Functional design of microvilli in the Malpighian tubules of the insect Rhodnius prolixus. J Cell Sci 60, 117135.Google Scholar
Buchmann, S.L. (1983). Buzz pollination in angiosperms. In Handbook of Experimental Pollination Biology, Jones, C.E. & Little, R.J. (Eds.), pp. 73113. New York: Van Nostrand-Rheinhold, Scientific and Academic Editions.Google Scholar
Bution, M.L. & Caetano, F.H. (2010). Symbiotic bacteria and the structural specializations in the ileum of Cephalotes ants. Micron 41, 373381.Google Scholar
Chapman, R.F. (2013). The Insects: Structure and Function, 5th ed. Cambridge, UK: Cambridge University Press.Google Scholar
Cianficconi, F., Sorcetti, C.C., Moretti, G. & Dallai, R. (1985). Ultrastructural organization of the rectal pads in the adult Stenophylux permistus (Trichoptera) McL. Boll Zool 52, 375391.Google Scholar
Credland, P.F. (1976). A structural study of the anal papillae of the midge Chironomus riparius Meigen (Diptera: Chironomidae). Cell Tissue Res 166, 531540.Google Scholar
Cruz-Landim, C. (1994). Ultrastructure of the ileum epithelium of Melipona quadrifasciata anthidioides (Hymenoptera, Apidae, Meliponinae). J Morphol 222, 191201.Google Scholar
Cruz-Landim, C. (1996). Ultrastructural evidences of the occurrence of digestion and absorption of organic solutes in bees ileum (Melipona quadrifasciata anthidioides—Hymenoptera, Apidae). J Submicrosc Cyto Pathol 28, 513520.Google Scholar
Cruz-Landim, C. (1998). Specializations of the Malpighian tubules cells in a stingless bee, Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae). Acta Microsc 7, 2633.Google Scholar
Cruz-Landim, C. (2009). Abelhas: Morfologia e Função de Sistemas. São Paulo, Brazil: Editora Unesp.Google Scholar
Cruz-Landim, C. & Serrão, J.E. (1997). Ultrastructure and histochemistry of the mineral concretrions in the midgut of bees (Hymenoptera: Apidae). Neth J Zool 47, 2129.Google Scholar
Diamond, J.M. & Bossert, W.H. (1967). Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50, 20612083.CrossRefGoogle Scholar
Dobrovsky, T.M. (1951). Postembryonic changes in the digestive tract of the worker honeybee (Apis mellifera L.). Ithaca, NY: Cornell University.Google Scholar
Ferreira, A. & Cruz-Landim, C. (1969). A comparative study of the rectal glands of Apoidea (Hymenoptera). An Acad Bras Cienc 41, 591600.Google Scholar
Garayoa, M., Villaro, A.C., Lezaum, M.J. & Sesma, P. (1999). Light and electron microscopic estudy of the hindgut of the ant (Formica nigricans, Hymenoptera): II. Structure of the rectum. J Morphol 242, 205228.Google Scholar
Garayoa, M., Villaro, A.C., Montuenga, L. & Sesma, P. (1992). Malpighian tubules of Formica polyctena (Hymenoptera): Light and electron microscopic study. J Morphol 214, 159171.Google Scholar
Goulson, D. (2003). Effects of introduced bees on native ecosystems. Ann Rev Ecol Syst 34, 126.Google Scholar
Goulson, D., Lye, G.C. & Darvill, B. (2008). Decline and conservation of bumble bees. Annu Rev Entomol 53, 191208.Google Scholar
Gullan, P.J. & Cranston, P.S. (2005). The Insects, 3rd ed. Oxford, UK: Blackwell Publishing.Google Scholar
Gupta, B.J. (1966). Fine structural organization of the rectum in the Blowfly, Calliphora eryhrocephala (Meig.) with special reference to connective tissue, tracheae and neurosecretory innervation in the rectal papillae. J Morph 120, 2382.Google Scholar
Hanrahan, S.A. & Nicolson, S.W. (1987). Infrastructure of the Malpighian tubules of Onymacris plana plana Peringuey (Coleoptera: Tenebrionidae). Int J Insect Morphol & Embryol 16, 99119.Google Scholar
Hazelton, S.R., Felgenhauer, B.E. & Spring, J.H. (2001). Ultrastructural changes in the Malpighian tubules of the house cricket, Acheta domesticus, at the onset of diuresis: A time study. J Morphol 247, 8092.Google Scholar
Hazelton, S.R., Parker, S.W. & Spring, J.H. (1988). Excretion on the house cricket (Acheta domesticus): Fine structure of the Malpighian tubules. Tissue Cell 20, 443460.Google Scholar
Irvine, B., Audsley, N., Lechleitner, R., Meredith, J., Thomson, B. & Phillips, J. (1988). Transport properties of locust ileum in vitro: Effects of cyclic AMP. J Exp Biol 137, 361385.CrossRefGoogle Scholar
Izzetoglu, G.T. & Ober, A. (2011). Histological investigation of the rectal sac in Bombyx mori L. Turk J Zool 35, 213221.Google Scholar
Jarial, M.S. (1992). Fine structure of the rectal pads in the desert locust Schistocerca gregaria with references to the mechanism of water uptake. Tissue Cell 24, 139155.Google Scholar
Jeantet, A.Y., Ballan-Dufrancais, C. & Martoja, R. (1977). Insects resistance to mineral pollution. Importance of spherocrystal in ionic regulation. Rev Ecol Biol Sol 14, 563582.Google Scholar
Jonusaite, S., Kelly, S.P. & Donini, A. (2013). Tissue specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomous riparius exposed to varying salinity. J Exp Biol 216, 36373648.Google Scholar
Kerr, W.E., Carvalho, G.A., Silva, A.C. & Assis, M.G. (2001). Aspectos poucos mencionados da biodiversidade amazônica. Parc Estrat 12, 2041.Google Scholar
Klowden, M. (2007). Physiological Systems in Insects, 2nd ed. San Diego, CA: Academic Press.Google Scholar
Lipovšek, S., Letofsky-Papst, I., Hofer, F., Pabst, M.A. & Devetak, D. (2012). Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc Res Techniq 75, 397407.Google Scholar
Maddrell, S.H. (1981). The functional design of the insect excretory system. J Exp Biol 90, 115.Google Scholar
Meyran, J.C. (1982). Comparative study of the segmental specializations in the Malpighian tubules of Blatella germanica (L.) (Dictyoptera: Blatellidae) and Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Int J Insect Morphol Embryol 11, 7998.Google Scholar
Morgan, P.J. & Mordue, W. (1981). Stimulated fluid secretion is sodium dependent in the Malpighian tubules of Locusta migratoria . J Insect Physiol 27, 271279.Google Scholar
Nicolson, S.W. (1990). Osmoregulation in a nectar-feeding insect, the carpenter bee Xylocopa capitata: Water excess and ion conservation. Physiol Entomol 15, 433440.Google Scholar
Nicolson, S.W. & Louw, G.N. (1982). Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J Exp Zool 222, 287296.Google Scholar
O'Donnell, M.J., Maddrell, S.H., Skaer, H.B. & Harrison, J.B. (1985). Elaborations of the basal surfaces of the cells of the Malpighian tubules of an insect. Tissue Cell 17, 865881.Google Scholar
Palmer, C.A., Wittrock, D.D. & Christensen, B.M. (1986). Ultrastructure of Malpighian tubules of Aedes aegypti infected with Dirofilaria immitis . J Invertebr Pathol 48, 310317.Google Scholar
Pavlovsky, E.N. & Zarin, E.V. (1922). On the structure of the alimentary canal and its ferments in the bee (Apis mellifera L.). Q J Microsc Sci 66, 509556.Google Scholar
Peacock, A.J. (1986). Ultrastructure of the ileum of Locusta migratoria . J Morphol 188, 191201.CrossRefGoogle ScholarPubMed
Phillips, J.E. & Dockrill, A.A. (1968). Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria). J Exp Biol 48, 521532.Google Scholar
Ryerse, J.S. (1979). Developmental changes in Malpighian tubule cell structure. Tissue Cell 11, 533551.Google Scholar
Santos, C.G., Neves, C.A., Zanuncio, J.C. & Serrão, J.E. (2009). Postembryonic development of rectal pads in bees (Hymenoptera, Apidae). Anat Rec 292, 16021611.Google Scholar
Santos, C.G. & Serrão, J.E. (2006). Histology of the ileum in bees (Hymenoptera, Apoidea). Braz J Morphol Sci 23, 405413.Google Scholar
Serrão, J.E. & Cruz-Landim, C. (1996). The ultrastructure of the phyloric valve region in bees, with considerations of fluid flux in the digestive troct. Cytobios 87, 237250.Google Scholar
Serrão, J.E., Marques-Silva, S. & Martins, G.F. (2004). The rectum of Oxaea flavescens (Andrenidae) has a specialized structure among bees. Micron 35, 245253.Google Scholar
Snodgrass, R.E. (1956). Anatomy of the Honey Bee. Ithaca, NY: Comstock Publishing Associates.Google Scholar
Sohal, R.J. (1974). Fine structure of the Malpighian tubules in the housefly, Musca domestica . Tissue Cell 6, 719728.Google Scholar
Taylor, H.H. (1971). Water and solute transport by the Malpighian tubules of the stick insect, Carausius morosus. Z Zellforsch Mikrosk Anat 118, 333368.Google Scholar
Treherne, J.E. (1958). The absorption of glucose from the alimentary canal of the locust Schistocerca gregaria (Forsk.). J Exp Biol 35, 297306.Google Scholar
Treherne, J.E. (1959). Amino acid absorption in the locust (Schistocerca gregaria Forsk.). J Exp Biol 36, 533545.Google Scholar
Velthuis, H.H. & van Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421451.Google Scholar
Villaro, A.C., Garayoa, M., Lezaun, M.J. & Sesma, P. (1999). Light and electron microscopic study of the hindgut of the ant Formica nigricans (Hymenoptera): I. Structure of the ileum. J Morphol 242, 189204.Google Scholar
Wessing, A. & Eichelberg, D. (1969). Elektronenoptische Untersuchungen an den Nierentubuli (Malpighische Gefäße) von Drosophila melanogaster . Z Zellforsch Mikrosk Anat 101, 285322.Google Scholar
Wigglesworth, V.B. & Salpeter, M.M. (1962). Histology of the Malpighian tubules in Rhodnius prolixus Stal (Hemiptera). J Insect Physiol 8, 299307.Google Scholar