Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T12:52:18.886Z Has data issue: false hasContentIssue false

Ultrastructure, Histochemistry, and Mineralization Patterns in the Ecdysial Suture of the Blue Crab, Callinectes sapidus

Published online by Cambridge University Press:  15 November 2005

Carolina Priester
Affiliation:
Department of Biological Sciences, University of North Carolina at Wilmington, Wilmington, NC 28403-5915, USA
Richard M. Dillaman
Affiliation:
Department of Biological Sciences, University of North Carolina at Wilmington, Wilmington, NC 28403-5915, USA
D. Mark Gay
Affiliation:
Department of Biological Sciences, University of North Carolina at Wilmington, Wilmington, NC 28403-5915, USA
Get access

Abstract

The ecdysial suture is the region of the arthropod exoskeleton that splits to allow the animal to emerge during ecdysis. We examined the morphology and composition of the intermolt and premolt suture of the blue crab using light microscopy and scanning electron microscopy. The suture could not be identified by routine histological techniques; however 3 of 22 fluorescein isothiocyanate-labeled lectins tested (Lens culinaris agglutinin, Vicia faba agglutinin, and Pisum sativum agglutinin) differentiated the suture, binding more intensely to the suture exocuticle and less intensely to the suture endocuticle. Back-scattered electron (BSE) and secondary electron observations of fracture surfaces of intermolt cuticle showed less mineralized regions in the wedge-shaped suture as did BSE analysis of premolt and intermolt resin-embedded cuticle. The prism regions of the suture exocuticle were not calcified. X-ray microanalysis of both the endocuticle and exocuticle demonstrated that the suture was less calcified than the surrounding cuticle with significantly lower magnesium and phosphorus concentrations, potentially making its mineral more soluble. The presence or absence of a glycoprotein in the organic matrix, the extent and composition of the mineral deposited, and the thickness of the cuticle all likely contribute to the suture being removed by molting fluid, thereby ensuring successful ecdysis.

Type
Biological Applications
Copyright
© 2005 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addadi, L. & Weiner, S. (1985). Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82, 41104114.Google Scholar
Aizenberg, J., Lambert, G., Weiner, S., & Addadi, L. (2001). Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J Am Chem Soc 124, 3239.Google Scholar
Buchholz, F. (1989). Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol 9, 311317.Google Scholar
Byers, S., van Rooden, J.C., & Foster, B.K. (1997). Structural changes in the large proteoglycans, aggrecan, in different zones of the ovine growth plate. Calcif Tissue Int 60, 7178.Google Scholar
Chapman, R.F. (1982). The Insects: Structure and Function. Cambridge, MA: Harvard University Press.
Coblentz, F.E., Shafer, T.H., & Roer, R.D. (1998). Cuticular proteins from the blue crab alter in vitro calcium carbonate mineralization. Comp Biochem Physiol B: Biochem Mol Biol 121, 349360.Google Scholar
Compère, P. & Goffinet, G. (1987a). Ultrastructural shape and three-dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab, Carcinus maenas. Tissue & Cell 19, 839857.Google Scholar
Compère, P. & Goffinet, G. (1987b). Elaboration and ultrastructural changes in the pore canal system of the mineralized cuticle of Carcinus maenas during the molting cycle. Tissue Cell 19, 859875.Google Scholar
Compère, P., Morgan, J.A., & Goffinet, G. (1993). Ultrastructural location of calcium and magnesium during mineralization of the cuticle of the shore crab, as determined by the K-pyroantimonate method and X-ray microanalysis. Cell Tissue Res 274, 567577.Google Scholar
Compère, P., Thorez, A., & Goffinet, G. (1998). Fine structural survey of the old cuticle degradation during pre-ecdysis in two European Atlantic crabs. Tissue Cell 30, 4156.Google Scholar
Crenshaw, M.A. (1982). Biological mineralization and demineralization: Mechanisms of normal biological mineralization of calcium carbonates. In Dahlem Konferenzen, Nancollas, G.H. (Ed.), pp. 243257. New York: Springer-Verlag.
Debray, H., Decout, D., Strecker, G., Spik, G., & Montreuil, J. (1981). Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117, 4155.Google Scholar
Dennell, R. (1947). The occurrence and significance of phenolic hardening in the newly formed cuticle of Crustacea Decapoda. Proc R Soc Lond B Biol Sci 134, 485503.Google Scholar
Dillaman, R., Hequembourg, S., & Gay, M. (2005). Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J Morphol 263, 356374.Google Scholar
Drach, P. (1939). Mue et cycle d'intermue chez les crustaces decapodes. Ann Inst Oceanogr 19, 103391.Google Scholar
Freeman, J.A. (1980). Hormonal control of chitinolytic activity in the integument of Balanus amphitrite, in vitro. Comp Biochem Physiol A Physiol 65, 1317.Google Scholar
Giraud-Guille, M.M. (1984a). Calcification initiation sites in the crab cuticle: The interprismatic septa, an ultrastuctural cytochemical study. Cell Tissue Res 236, 413420.Google Scholar
Giraud-Guille, M.M. (1984b). Fine structure of the chitin–protein system in the crab cuticle. Tissue Cell 16, 7592.Google Scholar
Giraud-Guille, M.M. & Quintana, C. (1982). Secondary ion microanalysis of the crab calcified cuticle: Distribution of mineral elements and interactions with cholesteric organic matrix. Biol Cell 44, 5767.Google Scholar
Gomori, G. (1950). A new stain for elastic tissue. Am J Clin Pathol 20, 665666.Google Scholar
Green, J.P. & Neff, M.R. (1972). A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4, 137171.Google Scholar
Gunthorpe, M.E., Sikes, C.S., & Wheeler, A.P. (1990). Promotion and inhibition of calcium carbonate crystallization in vitro by matrix protein from blue crab exoskeleton. Biol Bull 179, 191200.Google Scholar
Hackman, R.H. (1984). Cuticle: Biochemistry. In Biology of the Integument 1: Invertebrates, Bereiter-Hahn, J., Matoltsy, A.G. & Richards, K.S. (Eds.), pp. 583610. Berlin: Springer-Verlag.
Hadley, N.F. (1994). Water Relations of Terrestrial Arthropods. San Diego, CA: Academic Press.
Hegdahl, T., Gustavsen, F., & Silness, J. (1977a). The structure and mineralization of the carapace of the crab (Cancer pagurus L.): The exocuticle. Zool Scr 6, 101105.Google Scholar
Hegdahl, T., Gustavsen, F., & Silness, J. (1977b). The structure and mineralization of the carapace of the crab (Cancer pagurus L.): The epicuticle. Zool Scr 6, 215220.Google Scholar
Hegdahl, T., Silness, J., & Gustavsen, F. (1977c). The structure and mineralization of the carapace of the crab (Cancer pagurus L.): The endocuticle. Zool Scr 6, 8999.Google Scholar
Hequembourg, S.J. (2002). Early patterns of calcium and protein deposition in the carapace of the blue crab. M.S. Thesis. University of North Carolina at Wilmington.
Johnson, P.T. (1980). Histology of the Blue Crab, Callinectes sapidus. A Model of the Decapoda. New York: Praeger Publishers.
Kathirithamby, J., Luke, B.M., & Neville, A.C. (1990). The ultrastructure of the preformed ecdysial ‘line of weakness’ in the puparium cap of Elenchus tenuicornis (Kirby) (Insecta: Strepsiptera). Zool J Linnean Soc 98, 229236.Google Scholar
Leiner, I.E., Sharon, H., & Goldstein, I.J. (Eds.). (1986). The Lectins. Properties, Functions, and Applications in Biology and Medicine. Orlando, FL: Academic Press.
Levi-Kalisman, Y., Raz, S., Weiner, S., Addadi, L., & Sagi, I. (2000). X-ray absorption spectroscopy studies on the structure of a biogenic “amorphous” calcium carbonate phase. J Chem Soc/Dalton Trans 2000, 39773982.Google Scholar
Lowenstam, H.A. & Weiner, S. (1989). On Biomineralization. New York: Oxford University Press.
Mangum, C.P. (1985). Molting in the blue crab Callinectes sapidus: A collaborative study of intermediary metabolism, respiration and cardiovascular function, and ion transport. Preface. J Crustacean Biol 5, 185187.Google Scholar
Mangum, C.P, deFur, P.L., Fields, J.H.A., Henry, R.P., Kormanik, G.A., McMahon, B.R., Ricci, J., Towle, D.W., & Wheatly, M.G. (1985). Physiology of the blue crab Callinectes sapidus Rathbun during a molt. National Symposium on the Soft-Shelled Blue Crab Fishery, February 12–13, pp. 112.
Marlowe, R.L. & Dillaman, R.M. (1995). Acridine orange staining of decapod crustacean cuticle. Invertebr Biol 114, 7982.Google Scholar
Marlowe, R.L., Dillaman, R.M., & Roer, R.D. (1994). Lectin binding by crustacean cuticle: The cuticle of Callinectes sapidus throughout the molt cycle, and the intermolt cuticle of Procambarus clarkii and Ocypode quadrata. J Crustacean Biol 14, 231246.Google Scholar
McKee, M.D., Zalzal, S., & Nanci, A. (1996). Extracellular matrix in tooth cementum and mantle dentin: Localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245, 293312.Google Scholar
Murphy, D.B. (2001). Fundamentals of Light Microscopy and Electron Imaging. New York: Wiley-Liss.
Neville, A.C. (1975). Zoophysiology and Ecology, vol. 4/5: Biology of the Arthropod Cuticle, Hoar, W.S., Jacobs, J., Langer, H. & Lindauer, M. (Eds.). New York: Springer-Verlag.
O'Brien, J.J. & Skinner, D.M. (1987). Characterization of enzymes that degrade crab exoskeleton: I. Two alkaline cysteine proteinase activities. J Exp Zool 243, 389400.Google Scholar
O'Brien, J.J. & Skinner, D.M. (1988). Characterization of enzymes that degrade crab exoskeleton: II. Two acid proteinase activities. J Exp Zool 246, 124131.Google Scholar
Passano, L.M. (1960). Molting and its control. In The Physiology of Crustacea. Volume I: Metabolism and Growth, Waterman, T. (Ed.), pp. 473536. New York: Academic Press.
Presnell, J.K. & Schreibman, M.P. (1997). Humason's Animal Tissue Techniques. Baltimore, MD: The Johns Hopkins University Press.
Rasch, R., Cribb, B.W., Barry, J., & Palmer, C.M. (2003). Application of quantitative analytical electron microscopy to the mineral content of insect cuticle. Microsc Microanal 9, 152154.Google Scholar
Raz, S., Testeniere, O., Hecker, A., Weiner, S., & Luquet, G. (2002). Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203, 269274.Google Scholar
Raz, S., Weiner, S., & Addadi, L. (2000). Formation of high magnesian calcites via and amorphous precursor phase: Possible biological implications. Adv Mater 12, 3842.Google Scholar
Reddy, G.H. & Nancollas, G.H. (1976). The crystallization of calcium carbonate. IV. The effect of magnesium, strontium and sulfate ions. J Crystal Growth 35, 3338.Google Scholar
Roer, R.D. (1980). Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus meanas. J Exp Biol 88, 205218.Google Scholar
Roer, R.D. & Dillaman, R.M. (1984). The structure and calcification of the crustacean cuticle. Am Zool 24, 893909.Google Scholar
Roer, R.D. & Dillaman, R.M. (1993). Molt-related change in integumental structure and function. In The Crustacean Integument: Morphology and Biochemistry, Horst, M.N. & Freeman, J.A. (Eds.), pp. 137. Boca Raton, FL: CRC Press.
Roer, R.D., Halbrook, K.E., & Shafer, T.H. (2001). Glycosidase activity in the post ecdysial cuticle of the blue crab, Callinectes sapidus. Comp Biochem Physiol B Biochem Mol Biol 128, 683690.Google Scholar
Shafer, T.H., Roer, R.D., Midgette-Luther, C., & Brookins, T.A. (1995). Postecdysial cuticle alteration in the blue crab, Callinectes sapidus: Synchronous changes in glycoproteins and mineral nucleation. J Exp Zool 271, 171182.Google Scholar
Simkiss, K. (1975). Bone and Biomineralization. Studies in Biology no. 53. London: Edward Arnold Publishers Ltd.
Simkiss, K. (1994). Amorphous minerals in biology. In Biomineralization 93. Proceedings of the Seventh International Biomineralization Symposium. Monoco, November 1993. Allemand, D. & Cuif, J.-P. (Eds). pp. 4954. Bulletin de l'Institut océanographique, Monaco, n° spécial 14.
Skinner, D.M. (1962). The structure and metabolism of a crustacean integumentary tissue during a molt cycle. Biol Bull 123, 635647.Google Scholar
Skinner, D.M. (1985). Molting and regeneration. In The Biology of Crustacea, vol. 9. Integument, pigments, and hormonal processes, Bliss, D.E. & Mantel, L.H. (Eds.), pp. 43146. Orlando, FL: Academic Press, Inc.
Spicer, S.S. & Schulte, B.A. (1992). Diversity of cell glycoconjugates shown histochemically: A perspective. J Histochem Cytochem 40, 138.Google Scholar
Spindler, K.D. & Buchholz, F. (1988). Partial characterization of chitin degrading enzymes from two euphausiids, Euphausia superba and Meganyctiphanes norvegica. Polar Biol 9, 115122.Google Scholar
Spindler, K.D. & Funke, B. (1989). Characterization of chitinase from the brine shrimp Artemia. Comp Biochem Physiol B Biochem Mol Biol 94, 691695.Google Scholar
Spindler-Barth, M., Van Wormhoudt, A., & Spindler, K.D. (1990). Chitinolytic enzymes in the integument and midgut-gland of the shrimp Palaemon serratus during the moulting cycle. Mar Biol 106, 4952.Google Scholar
Spurr, A.R. (1969). A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 3143.Google Scholar
Stevenson, J.R. (1968). Metecdysial molt staging and changes in the cuticle in the crayfish Orconectes sanborni (Faxon). Crustaceana 14, 169177.Google Scholar
Stevenson, J.R. (1972). Changing activities of the crustacean epidermis during the molt cycle. Am Zool 12, 373380.Google Scholar
Stumm, W. & Morgan, J.J. (1981). Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York: Wiley-Interscience.
Summers, N.M., Jr. (1967). Cuticle sclerotization and blood phenol oxidase in the fiddler crab, Uca pugnax. Comp Biochem Physiol 23, 129138.Google Scholar
Summers, N.M., Jr. (1968). The conversion of tyrosine to catecholamines and the biogenesis of N-acetyl-dopamine in isolated epidermis of the fiddler crab, Uca pugilator. Comp Biochem Physiol 26, 259269.Google Scholar
Taylor, J.R.A. & Kier, W.M. (2003). Switching skeletons: Hydrostatic support in molting crabs. Science 301, 209210.Google Scholar
Thompson, S.W. (1966). Selected Histochemical and Histopathological Methods. Springfield, IL: Charles C. Thomas Publisher.
Travis, D.F. (1955a). The molting cycle of the spiny lobster, Panulirus argus Latreille. II. Pre-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol Bull 108, 88112.Google Scholar
Travis, D.F. (1955b). The molting cycle of the spiny lobster, Panulirus argus Latreille. III. Physiological changes which occur in the blood and urine during the normal molting cycle. Biol Bull 109, 484503.Google Scholar
Travis, D.F. (1957). The molting cycle of the spiny lobster, Panulirus argus Latreille. IV. Post-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol Bull 113, 451479.Google Scholar
Travis, D.F. (1963). Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann N Y Acad Sci 109, 177245.Google Scholar
Travis, D.F. (1965). The deposition of skeletal structures in the Crustacea. 5. The histomorphological and histochemical changes associated with the development and calcification of the branchial exoskeleton in the crayfish, Orconectes virilis Hagen. Acta Histochem 20S, 193222.Google Scholar
Travis, D.F. & Friberg, U. (1963). The deposition of skeletal structures in the Crustacea. VI. Microradiographic studies of the exoskeleton of the crayfish Orconectes virilis Hagen. J Ultrastruct Res 9, 285301.Google Scholar
Vacca, L.L. & Fingerman, M. (1975). The mechanisms of tanning in the fiddler crab, Uca pugilator. I. Tanning agents and protein carriers in the blood during ecdysis. Comp Biochem Physiol B Biochem Mol Biol 51, 475481.Google Scholar
Vinogradov, A.P. (1953). The Elementary Chemical Composition of Marine Organisms. New Haven, CT: Yale University, Sears Foundation for Marine Research.
Vogel, S. (1988). Life's Devices: The Physical World of Animals and Plants. Princeton, NJ: Princeton University Press.
Wheeler, A.P., Rusenko, K.W., Swift, D.M., & Sikes, C.S. (1988). Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix. Mar Biol 98, 7180.Google Scholar
Williams, C.L., Dillaman, R.M., Elliott, E.A., & Gay, D.M. (2003). Formation of the arthrodial membrane in the blue crab, Callinectes sapidus. J Morphol 256, 260269.Google Scholar
Young, N.M., Watson, D.C., & Thibault, P. (1996). Post-translational proteolytic processing and the isolectins of lentil and other Viciae seed lectins. Glycoconjugate J 13, 575583.Google Scholar
Zar, J.H. (1999). Biostatistical Analysis, 4th ed. Upper Saddle River, NJ: Prentice-Hall.