Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:56:28.479Z Has data issue: false hasContentIssue false

Total-Scattering Pair-Distribution Function of Organic Material from Powder Electron Diffraction Data

Published online by Cambridge University Press:  16 December 2014

Tatiana E. Gorelik*
Affiliation:
Institute of Physical Chemistry, Johannes Gutenberg-University, Jakob Welder Weg 11, 55128 MainzGermany
Martin U. Schmidt
Affiliation:
Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
Ute Kolb
Affiliation:
Institute of Physical Chemistry, Johannes Gutenberg-University, Jakob Welder Weg 11, 55128 MainzGermany Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany
Simon J. L. Billinge
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
*
*Corresponding author. [email protected]; [email protected]
Get access

Abstract

This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeykoon, M., Malliakas, C.D., Juhás, P., Božin, E.S., Kanatzidis, M.G. & Billinge, S.J.L. (2012). Quantitative nanostructure characterization using atomic pair distribution functions obtained from laboratory electron microscopes. Z Krist 227, 248256.CrossRefGoogle Scholar
Ankele, J.E., Mayer, J., Lamparter, P. & Steeb, S. (2005). Quantitative electron diffraction data of amorphous materials. Z Naturforsch 60a, 459468.CrossRefGoogle Scholar
Anstis, G.R., Liu, Z. & Lake, M. (1988). Investigation of amorphous materials by electron diffraction—The effects of multiple scattering. Ultramicroscopy 26, 6570.CrossRefGoogle Scholar
Barnes, A.C., Fischer, H.E. & Salmon, P.S. (2003). Neutron and X-ray diffractions for the structural study of liquids and glasses. Journal de Physique IV 103, 359390. (in French).Google Scholar
Bates, S., Zografi, G., Engers, D., Morris, K., Crowley, K. & Newman, A. (2006). Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res 23, 23332349.CrossRefGoogle ScholarPubMed
Billinge, S.J.L. (2008 a). Nanoscale structural order from the atomic pair distribution function (PDF): There’s plenty of room in the middle. J Solid State Chem 181, 16981703.CrossRefGoogle Scholar
Billinge, S.J.L. (2008 b). Local structure from total scattering and atomic pair distribution function (PDF) analysis. In Powder Diffraction: Theory and Practice, Dinnebier, R.E. & Billinge, S.J.L. (Eds.), pp. 464493. London, England: Royal Society of Chemistry.CrossRefGoogle Scholar
Billinge, S.J.J., Dykhne, T., Juhás, P., Božin, E., Taylor, R., Florence, A.J. & Shankland, K. (2010). Characterisation of amorphous and nanocrystalline molecular materials by total scattering. CrystEngComm 12, 13661368.CrossRefGoogle Scholar
Billinge, S.J.L. & Kanatzidis, M.G. (2004). Beyond crystallography: the study of disorder nanocrystallinity and crystallographically challenged materials. Chem Commun 2004, 749760.CrossRefGoogle Scholar
Billinge, S.J.L. & Levin, I. (2007). The problem with determining atomic structure at the nanoscale. Science 316, 561565.CrossRefGoogle ScholarPubMed
Brown, C.J. (1968). Crystal structure of β-copper phthalocyanine. J Chem Soc A 1968, 24882493.CrossRefGoogle Scholar
Capitani, G.C., Oleynikov, P., Hovmöller, S. & Mellini, M. (2006). A practical method to detect and correct for lens distortion in the TEM. Ultramicroscopy 106, 6674.CrossRefGoogle ScholarPubMed
Chupas, P.J., Qiu, X., Hanson, J.C., Lee, P.L., Grey, C.P. & Billinge, S.J.L. (2003). Rapid-acquisition pair distribution function (RA-PDF) analysis. J Appl Cryst 36, 13421347.CrossRefGoogle Scholar
Cockayne, D.J.H. (2007). The study of nanovolumes of amorphous materials using electron scattering. Annu Rev Mater Res 37, 159187.CrossRefGoogle Scholar
Coltman, J.W. (1955). Electron diffraction camera, United States Patent 2727153.Google Scholar
Dorset, D.L. (1995). Structural Electron Crystallography. New York: Plenum Publishing Corporation.CrossRefGoogle ScholarPubMed
Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2), 129228.CrossRefGoogle ScholarPubMed
Dykhne, T., Taylor, R., Florence, A. & Billinge, S.J.L. (2011). Data requirements for the reliable use of atomic pair distribution functions in amorphous pharmaceutical fingerprinting. Pharm Res 28, 10411048.CrossRefGoogle ScholarPubMed
Egami, T. & Billinge, S.J.L. (2012). Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Oxford: Pergamon Press Elsevier.Google Scholar
Elschner, C., Levin, A.A., Wilde, L., Grenzer, J., Schroer, C., Leo, K. & Riede, M. (2011). Determining the C60 molecular arrangement in thin films by means of X-ray diffraction. J Appl Cryst 44, 983990.CrossRefGoogle Scholar
Farrow, C.L. & Billinge, S.J.L. (2009). Relationship between the atomic pair distribution function and small angle scattering: Implications for modeling of nanoparticles. Acta Cryst A 65, 232239.CrossRefGoogle ScholarPubMed
Farrow, C.L., Juhás, P., Liu, J., Bryndin, D., Bozin, E.S., Bloch, J., Proffen, T. & Billinge, S.J.L. (2007). PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J Phys Condens Mat 19, 335219.CrossRefGoogle ScholarPubMed
Farrow, C.L., Ruan, C.-Y. & Billinge, S.J.L. (2010). Quantitative nanoparticle structures from electron crystallography data. Phys Rev B81, 124104.Google Scholar
Faruqi, A.R. & McMullan, G. (2011). Electronic detectors for electron microscopy. Q Rev Biophys 44, 357390.CrossRefGoogle ScholarPubMed
Gemmi, M. & Nicolopoulos, S. (2007). Structure solution with three-dimensional sets of precessed electron diffraction intensities. Ultramicroscopy 107, 483494.CrossRefGoogle ScholarPubMed
Gemmi, M., Voltolini, M., Ferretti, A.M. & Ponti, A. (2011). Quantitative texture analysis from powder-like electron diffraction data. J Appl Cryst 44, 454461.CrossRefGoogle Scholar
Gemmi, M., Zou, X., Hovmoller, S., Migliori, A., Vennstrom, M. & Andersson, Y. (2003). Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Cryst A 59, 117126.CrossRefGoogle ScholarPubMed
Gorelik, T., Matveeva, G., Kolb, U., Schleuss, T., Kilbinger, A.F.M., van de Streek, J., Bohle, A. & Brunklaus, G. (2010). H-bonding schemes of di- and tri-p-benzamides assessed by a combination of electron diffraction, X-ray powder diffraction and solid-state NMR. CrystEngComm 12, 18241832.CrossRefGoogle Scholar
Gorelik, T., Schmidt, M.U., Brüning, J., Bekoe, S. & Kolb, U. (2009). Using electron diffraction to solve the crystal structure of a laked azo pigment. Cryst Growth Des 9, 38983903.CrossRefGoogle Scholar
Gorelik, T.E., van de Streek, J., Kilbinger, A.F.M., Brunklaus, G. & Kolb, U. (2012). Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. Acta Cryst B 68, 171181.CrossRefGoogle ScholarPubMed
Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, 3rd ed. Weinheim: Wiley-VCh.CrossRefGoogle Scholar
Hirata, A., Hirotsu, Y., Ohkubo, T., Hanada, T. & Bengus, V.Z. (2006). Compositional dependence of local atomic structures in amorphous Fe100−xBx (x=14, 17, 20) alloys studied by electron diffraction and high-resolution electron microscopy. Phys Rev B 74, 214206-1214206-9.CrossRefGoogle Scholar
Hirata, A., Morino, T., Hirotsu, Y., Itoh, K. & Fukunaga, T. (2007). Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction. Mater Trans 48, 12991303.CrossRefGoogle Scholar
Hirotsu, Y., Ohkubo, T., Bae, I.-T. & Ishimaru, M. (2003). Electron diffraction structure analysis for amorphous materials. Mater Chem Phys 81, 360363.CrossRefGoogle Scholar
Juhás, P., Cherba, D.M., Duxbury, P.M., Punch, W.F. & Billinge, S.J.L. (2006). Ab initio determination of solid-state nanostructure. Nature 440, 655658.CrossRefGoogle ScholarPubMed
Juhás, P., Granlund, L., Gujarathi, S.R., Duxbury, P.M. & Billinge, S.J.L. (2010). Crystal structure solution from experimentally determined atomic pair distribution functions. J Appl Cryst 42, 623629.CrossRefGoogle Scholar
Klug, H.P. & Alexander, L.E. (1974). X-ray Diffraction Procedures, 2nd ed. New York: Wiley.Google Scholar
Kolb, U., Gorelik, T. & Otten, M.T. (2008). Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy 108, 763772.CrossRefGoogle ScholarPubMed
Kolb, U., Mugnaioli, E. & Gorelik, T.E. (2011). Automated electron diffraction tomography—A new tool for nano crystal structure analysis. Cryst Res Technol 46, 542554.CrossRefGoogle Scholar
Kolb, U., Gorelik, T.E., Mugnailoi, E. & Stewart, A. (2010). Structural characterization of organics using manual and automated electron diffraction. Polym Rev 50, 385409.CrossRefGoogle Scholar
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507513.CrossRefGoogle ScholarPubMed
Kim, J.-S., Kim, M.-S., Park, H.J., Jin, S.-J., Lee, S. & Hwang, S.-J. (2008). Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm 359, 211219.CrossRefGoogle ScholarPubMed
Kim, J.G., Seo, J.W., Cheon, J. & Kim, Y.J. (2009). Rietveld analysis of nano-crystalline MnFe2O4 with electron powder diffraction. Bull Korean Chem Soc 30, 183187.Google Scholar
Làbàr, J.L. (2004). Phase identification by combining local composition from EDX with information from diffraction database. In Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials, Weirich, T.E., Lábár, J.L. & Zuo, X.D. (Eds.), pp. 207218. Dordrecht, The Netherlands: Springer. (Proceedings of the NATO Advances Study Institute on Electron Crystallography, Erice, Italy, June 10–14, 2004).Google Scholar
Lábár, J. (2008). Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, Part I: Principles. Microsc Microanal 14, 287295.CrossRefGoogle Scholar
Lábár, J.L. (2009). Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, Part II: Implementation. Microsc Microanal 15, 2029.CrossRefGoogle ScholarPubMed
Lotsch, B.V., Döblinger, M., Sehnert, J., Seyfarth, L., Senker, J., Oeckler, O. & Schnick, W. (2007). Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—Structural characterization of a carbon nitride polymer. Chem Eur J 13, 49694980.CrossRefGoogle ScholarPubMed
Luo, Z., Vasquez, Y., Bondi, J.F. & Schaak, R.E. (2011). Pawley and rietveld refinements using electron diffraction from L12-type intermetallic Au3Fe1−x nanocrystals during their in-situ order–disorder transition. Ultramicroscopy 111, 12951304.CrossRefGoogle ScholarPubMed
Marijnissen, J.C.M., Yurteri, C.U., van Erven, J. & Ciach, T. (2010). Medicine nanoparticle production by EHDA. In Nanoparticles in Medicine and Environment Inhalation and Health Effects. Springer, Dordrecht, The Netherlands, 3958.CrossRefGoogle Scholar
McCulloch, D.G., McKenzie, D.R., Goringe, C.M., Cockayne, D.J.H., McBride, W. & Green, D.C. (1999). Experimental and theoretical characterisation of structure in thin disordered films. Acta Cryst A 55, 178187.CrossRefGoogle ScholarPubMed
Mizuguchi, J., Sasaki, T. & Tojo, K. (2002). Refinement of the crystal structure of 5,7,12,14-tetrahydro[2,3-b]-quinolinoacridine (gamma-form), C20H12N2O2, at 223 K. Z Krist 217, 249250.Google Scholar
Moeck, P. & Rouvimov, S. (2009). Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope: Utilizing Information on Projected Reciprocal Lattice Geometry, 2D Symmetry, and Structure Factors, in Drug Delivery Nanoparticles Formulation and Characterization. USA, New York: Informa Healthcare.CrossRefGoogle Scholar
Moore, M.D., Steinbach, A.M., Buckner, I.S. & Wildfong, P.L.D. (2009). A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis. Pharm Res 26, 24292437.CrossRefGoogle ScholarPubMed
Moss, S.C. & Graczyk, J.F. (1969). Evidence of voids within the as-deposited structure of glassy silicon. Phys RevLett 23, 11671171.Google Scholar
Mugnaioli, E., Capitani, G., Nieto, F. & Mellini, M. (2009). Accurate and precise lattice parameters by selected-area electron diffraction in the transmission electron microscope. Am Mineral 94, 793800.CrossRefGoogle Scholar
Neder, R.B. & Proffen, T. (2009). Diffuse Scattering and Defect Structure Simulations: A Cook Book Using the Program DISCUS. New York: Oxford University Press.Google Scholar
Noerenberg, H., Saeverin, R., Hoppe, U. & Holzhueter, G. (1999). Estimation of radial distribution functions in electron diffraction experiments: Physical, mathematical and numerical aspects. J Appl Cryst 32, 911916.CrossRefGoogle Scholar
Paulus, E.F., Leusen, F.J.J. & Schmidt, M.U. (2007). Crystal structures of quinacridones. CrystEngComm 9, 131143.CrossRefGoogle Scholar
Petkov, V. & Billinge, S.J.L. (2002). From crystals to nanocrystals: Semiconductors and beyond, In Proceedings of the Workshop From Semiconductors to Proteins: Beyond the Average Structure, July 28–August 1, 2001, Traverse City, MI, Billinge, S. J. L. & Thorpe, M. F. (Eds.). Plenum, New York, 153168.Google Scholar
Petkov, V., Parvanov, V., Trikalitis, P., Malliakas, C., Vogt, T. & Kanatzidis, M. (2005 a). Three-dimensional structure of nanocomposites from atomic pair distribution function analysis: Study of polyaniline and polyaniline 0.5V2O5×1.0 H2O. J Am Chem Soc 127, 88058812.CrossRefGoogle ScholarPubMed
Petkov, V., Parvanov, V., Tomalia, D., Swanson, D., Bergstrom, D. & Vogt, T. (2005 b). 3D structure of dendritic and hyper-branched macromolecules by X-ray diffraction. Solid State Commun 134, 671675.CrossRefGoogle Scholar
Prasad, R.S., Yandrapu, S.K. & Manavalan, R. (2010). Preparation and characterization of itraconazole solid dispersions for improved oral bioavailability. Int J ChemTech Res 2, 133142.Google Scholar
Rademacher, N., Daemen, L.L., Chronister, E.L. & Proffen, T. (2012). Pair distribution function analysis of molecular compounds: Significance and modeling approach discussed using the example of p-terphenyl. J Appl Cryst 45, 482488.CrossRefGoogle Scholar
Schmidt, M.U. (2010). PDF investigations on quinacridone polymorphs. 12th European Powder Diffraction Conference EPDIC-12, Darmstadt, Germany, August 27–30, 2010.Google Scholar
Schmidt, M.U., Brühne, S., Wolf, A.K., Rech, A., Brüning, J., Alig, E., Fink, L., Buchsbaum, C., Glinnemann, J., van de Streek, J., Gozzo, F., Brunelli, M., Stowasser, F., Gorelik, T., Mugnaioli, E. & Kolb, U. (2009). Electron diffraction, X-ray powder diffraction and pair distribution function analyses to determine the crystal structures of pigment yellow 213, C23H21N5O9 . Acta Cryst B 65, 189199.CrossRefGoogle ScholarPubMed
Sproul, A., McKenzie, D.R. & Cockayne, D.J.H. (1986). Structural study of hydrogenated amorphous silicon–carbon alloys. Phil Mag B 54, 113131.CrossRefGoogle Scholar
Tucker, M.G., Keen, D.A., Dove, M.T., Goodwin, A.L. & Hui, Q. (2007). RMCProfile: Reverse Monte Carlo for polycrystalline material. J Phys Condensed Matter 19, 335218/1335218/16.CrossRefGoogle Scholar
Vainshtein, B.K. (1964). Structure Analysis by Electron Diffraction. New York: Pergamon Press.Google Scholar
Vincent, R. & Midgley, P.A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271282.CrossRefGoogle Scholar
Voigt-Martin, I.G., Yan, D.H., Yakimansky, A., Schollmeyer, D., Gilmore, C.J. & Bricogne, G. (1995). Structure determination by electron crystallography using both maximum-entropy and simulation approaches. Acta Cryst A 51, 849868.CrossRefGoogle Scholar
Wagner, C.N.J. (1978). Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering). J Non-Cryst Solids 31, 140.CrossRefGoogle Scholar
Warren, B.E. (1969). X-ray Diffraction. New York: Addison-Wesley.Google Scholar
Waseda, Y. (1980). The Structure of Non-Crystalline Materials. New York: McGraw-Hill.Google Scholar
Weirich, T.E., Portillo, J., Cox, G., Hibst, H. & Nicolopoulos, S. (2006). Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100 kV precession electron diffraction data. Ultramicroscopy 106, 164175.CrossRefGoogle ScholarPubMed
Weirich, T.E., Winterer, M., Seifried, S., Hahn, H. & Fuess, H. (2000). Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2 . Ultramicroscopy 81, 263270.CrossRefGoogle ScholarPubMed
Wolf, A.K., Brühne, S., Glinnemann, J., Hu, C., Kirchner, M.T. & Schmidt, M.U. (2012). Local atomic order in sodium p-chlorobenzenesulfonate monohydrate studied by pair distribution function analyses and lattice-energy minimisations. Z Krist 127, 113121.CrossRefGoogle Scholar
Wright, A.C. (1985). Scientific opportunities for the study of amorphous solids using pulsed neutron sources. J Non-Cryst Solids 76, 187.CrossRefGoogle Scholar
Young, C.A. & Goodwin, A.L. (2011). Applications of pair distribution function methods to contemporary problems in materials chemistry. J Mater Chem 21, 64646476.CrossRefGoogle Scholar
Yu, L. (2001). Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev 48, 2742.CrossRefGoogle ScholarPubMed
Zewail, A.H. (2006). 4D Ultrafast electron diffraction, crystallography, and microscopy. Annu Rev Phys Chem 57, 65103.CrossRefGoogle ScholarPubMed
Zhang, P., Borgnia, M., Mooney, P., Shi, D., Pan, M., O’Herron, P., Mao, A., Brogan, D., Milne, J.L.S. & Subramaniam, S. (2003). Automated image acquisition and processing using a new generation of 4 K x 4 K CCD cameras for cryo electron microscopic studies of macromolecular assemblies. J Struct Biol 143(2), 135144.CrossRefGoogle Scholar