Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T03:08:42.210Z Has data issue: false hasContentIssue false

Three-Dimensional Morphology of Microdamage in Peri-Screw Bone: A Scanning Electron Microscopy of Methylmethacrylate Cast Replica

Published online by Cambridge University Press:  09 October 2012

Lei Wang
Affiliation:
Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PRChina
Jin Shao
Affiliation:
Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PRChina
Tingjun Ye
Affiliation:
Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PRChina
Lianfu Deng
Affiliation:
Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PRChina
Shijing Qiu*
Affiliation:
Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PRChina Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Screw implantation inevitably causes microdamage in surrounding bone. However, little is known about the detailed characteristics of microdamage in peri-screw bone. In this study, we developed a method to construct microdamage cast with methylmethacrylate (MMA) and observed the cast using scanning electron microscopy (SEM). In basic fuchsin stained bone sections observed by bright-field and fluorescence microscopy, diffuse damage, cross-hatched damage, and linear cracks were all presented in peri-screw bone. Using MMA casting/SEM method, we found numerous densely packed microcracks in the areas with diffuse damage. The osteocyte canaliculi and the microcracks consisting of diffuse damage had a similar diameter (or width), usually <0.5 μm, but their morphology was largely different. In the area with cross-hatched damage, the orientation of microcracks was similar to that in diffuse damage, but the number was significantly decreased. Many microcracks were thicker than 1 μm and associated with a rough surface. Large linear cracks (∼10 μm in diameter) occurred in different areas. Plenty of microcracks were present on the surface of some linear cracks. In conclusion, the MMA casting/SEM method can demonstrate the three-dimensional morphology of different types of microdamage, particularly the microcracks in diffuse damage, which are unable to be shown by light microscopy.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartold, P.M., Kuliwaba, J.S., Lee, V., Shah, S., Marino, V. & Fazzalari, N.L. (2010). Influence of surface roughness and shape on microdamage of the osseous surface adjacent to titanium dental implants. Clin Oral Implants Res 22(6), 613618.Google Scholar
Bhandari, M., Tornetta, P. 3rd, Hanson, B. & Swiontkowski, M.F. (2009). Optimal internal fixation for femoral neck fractures: Multiple screws or sliding hip screws? J Orthop Trauma 23(6), 403407.Google Scholar
Buchter, A., Kleinheinz, J., Wiesmann, H.P., Kersken, J., Nienkemper, M., Weyhrother, H., Joos, U. & Meyer, U. (2005). Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin Oral Implants Res 16(1), 18.Google Scholar
Burr, D. (2003). Microdamage and bone strength. Osteoporos Int 14(Suppl 5), 6772.CrossRefGoogle ScholarPubMed
Burr, D.B. (2011). Why bones bend but don't break. J Musculoskelet Neuronal Interact 11(4), 270285.Google Scholar
Burr, D.B., Forwood, M.R., Fyhrie, D.P., Martin, R.B., Schaffler, M.B. & Turner, C.H. (1997). Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12(1), 615.Google Scholar
Burr, D.B. & Hooser, M. (1995). Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo . Bone 17(4), 431433.Google Scholar
Burr, D.B., Turner, C.H., Naick, P., Forwood, M.R., Ambrosius, W., Hasan, M.S. & Pidaparti, R. (1998a). Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4), 337345.Google Scholar
Burr, D.B., Turner, C.H., Naick, P., Forwood, M.R. & Pidaparti, R. (1998b). En bloc staining of bone under load does not improve dye diffusion into microcracks. J Biomech 31(3), 285288.Google Scholar
Carlsson, K., Danielsson, P.E., Lenz, R., Liljeborg, A., Majlof, L. & Aslund, N. (1985). Three-dimensional microscopy using a confocal laser scanning microscope. Opt Lett 10(2), 5355.Google Scholar
Curtis, T.A., Ashrafi, S.H. & Weber, D.F. (1985). Canalicular communication in the cortices of human long bones. Anat Rec 212(4), 336344.CrossRefGoogle ScholarPubMed
Diab, T., Condon, K.W., Burr, D.B. & Vashishth, D. (2006). Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38(3), 427431.Google Scholar
Diab, T. & Vashishth, D. (2007). Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 40(3), 612618.Google Scholar
Fazzalari, N.L., Forwood, M.R., Manthey, B.A., Smith, K. & Kolesik, P. (1998). Three-dimensional confocal images of microdamage in cancellous bone. Bone 23(4), 373378.CrossRefGoogle ScholarPubMed
Frost, H.M. (1960). Presence of microscopic cracks in vivo in bone. Bull Henry Ford Hosp 8, 2535.Google Scholar
Garetto, L.P., Chen, J., Parr, J.A. & Roberts, W.E. (1995). Remodeling dynamics of bone supporting rigidly fixed titanium implants: A histomorphometric comparison in four species including humans. Implant Dent 4(4), 235243.Google Scholar
Gorczyca, J., Skawina, A., Litwin, J.A. & Miodonski, A.J. (1998). Microcirculation of human fetal posterior root ganglia: A scanning electron microscopic study of corrosion casts. Ann Anat 180(1), 2530.Google Scholar
Gorustovich, A.A. (2010). Imaging resin-cast osteocyte lacuno-canalicular system at bone-bioactive glass interface by scanning electron microscopy. Microsc Microanal 16(2), 132136.Google Scholar
Herman, B.C., Cardoso, L., Majeska, R.J., Jepsen, K.J. & Schaffler, M.B. (2010). Activation of bone remodeling after fatigue: Differential response to linear microcracks and diffuse damage. Bone 47(4), 766772.Google Scholar
Hodde, K.C. & Nowell, J.A. (1980). SEM of micro-corrosion casts. Scan Electron Microsc 1980(Pt 2), 89106.Google Scholar
Hoshaw, S.J., Fyhrie, D.P. & Schaffler, M.B. (1994a). The effect of implant insertion and design on bone microdamage. In The Biological Mechanism of Tooth Eruption, Resorption and Replacement, Davidovitch, Z. (Ed.), pp. 735741. Boston, MA: Havard Society for the Advancement of Orthodontics.Google Scholar
Hoshaw, S.J., Schaffler, M.B. & Fyhrie, D.P. (1994b). Effect of thread design on microdamage creation in cortical bone. In Trans Orthop Res Soc 19, 537.Google Scholar
Huja, S.S., Hasan, M.S., Pidaparti, R., Turner, C.H., Garetto, L.P. & Burr, D.B. (1999a). Development of a fluorescent light technique for evaluating microdamage in bone subjected to fatigue loading. J Biomech 32(11), 12431249.CrossRefGoogle ScholarPubMed
Huja, S.S., Katona, T.R., Burr, D.B., Garetto, L.P. & Roberts, W.E. (1999b). Microdamage adjacent to endosseous implants. Bone 25(2), 217222.Google Scholar
Krucker, T., Lang, A. & Meyer, E.P. (2006). New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc Res Tech 69(2), 138147.Google Scholar
Lee, T.C., Mohsin, S., Taylor, D., Parkesh, R., Gunnlaugsson, T., O'Brien, F.J., Giehl, M. & Gowin, W. (2003). Detecting microdamage in bone. J Anat 203(2), 161172.Google Scholar
Lee, T.C., Myers, E.R. & Hayes, W.C. (1998). Fluorescence-aided detection of microdamage in compact bone. J Anat 193(Pt 2), 179184.Google Scholar
Martin, D.M., Hallsworth, A.S. & Buckley, T. (1978). A method for the study of internal spaces in hard tissue matrices by SEM, with special reference to dentine. J Microsc 112(3), 345352.Google Scholar
Minnich, B., Leeb, H., Bernroider, E.W. & Lametschwandtner, A. (1999). Three-dimensional morphometry in scanning electron microscopy: A technique for accurate dimensional and angular measurements of microstructures using stereopaired digitized images and digital image analysis. J Microsc 195(Pt 1), 2333.Google Scholar
Moore, T.L. & Gibson, L.J. (2001). Modeling modulus reduction in bovine trabecular bone damaged in compression. J Biomech Eng 123(6), 613622.Google Scholar
O'Brien, F.J., Brennan, O., Kennedy, O.D. & Lee, T.C. (2005). Microcracks in cortical bone: How do they affect bone biology? Curr Osteoporos Rep 3(2), 3945.CrossRefGoogle ScholarPubMed
O'Brien, F.J., Taylor, D., Dickson, G.R. & Lee, T.C. (2000). Visualisation of three-dimensional microcracks in compact bone. J Anat 197(Pt 3), 413420.Google Scholar
O'Brien, F.J., Taylor, D. & Lee, T.C. (2003). Microcrack accumulation at different intervals during fatigue testing of compact bone. J Biomech 36(7), 973980.Google Scholar
Oh, T.J., Yoon, J., Misch, C.E. & Wang, H.L. (2002). The causes of early implant bone loss: Myth or science? J Periodontol 73(3), 322333.Google Scholar
Okada, S., Yoshida, S., Ashrafi, S.H. & Schraufnagel, D.E. (2002). The canalicular structure of compact bone in the rat at different ages. Microsc Microanal 8(2), 104115.Google Scholar
Paddock, S.W. (2000). Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 16(2), 127149.Google Scholar
Parsamian, G.P. & Norman, T.L. (2001). Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness. J Mater Sci Mater Med 12(9), 779783.CrossRefGoogle ScholarPubMed
Perren, S.M. (2002). Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: Choosing a new balance between stability and biology. J Bone Joint Surg Br 84(8), 10931110.CrossRefGoogle ScholarPubMed
Qiu, S., Sudhaker Rao, D., Fyhrie, D.P., Palnitkar, S. & Parfitt, A.M. (2005). The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37(1), 1015.CrossRefGoogle ScholarPubMed
Reilly, G.C. (2000). Observations of microdamage around osteocyte lacunae in bone. J Biomech 33(9), 11311134.CrossRefGoogle ScholarPubMed
Sahar, N.D., Hong, S.I. & Kohn, D.H. (2005). Micro- and nano-structural analyses of damage in bone. Micron 36(7-8), 617629.Google Scholar
Schaffler, M.B., Choi, K. & Milgrom, C. (1995). Aging and matrix microdamage accumulation in human compact bone. Bone 17(6), 521525.Google Scholar
Schaffler, M.B., Pitchford, W.C., Choi, K. & Riddle, J.M. (1994). Examination of compact bone microdamage using back-scattered electron microscopy. Bone 15(5), 483488.CrossRefGoogle ScholarPubMed
Schaffler, M.B., Radin, E.L. & Burr, D.B. (1990). Long-term fatigue behavior of compact bone at low strain magnitude and rate. Bone 11(5), 321326.Google Scholar
Skawina, A., Litwin, J.A., Gorczyca, J. & Miodonski, A.J. (1994). The vascular system of human fetal long bones: A scanning electron microscope study of corrosion casts. J Anat 185(Pt 2), 369376.Google Scholar
Skawina, A., Litwin, J.A., Gorczyca, J. & Miodonski, A.J. (1997). The architecture of internal blood vessels in human fetal vertebral bodies. J Anat 191(Pt 2), 259267.Google Scholar
Vashishth, D. (2007). Hierarchy of bone microdamage at multiple length scales. Int J Fatigue 29(6), 10241033.CrossRefGoogle ScholarPubMed
Vashishth, D., Koontz, J., Qiu, S.J., Lundin-Cannon, D., Yeni, Y.N., Schaffler, M.B. & Fyhrie, D.P. (2000). In vivo diffuse damage in human vertebral trabecular bone. Bone 26(2), 147152.Google Scholar
Walocha, J.A., Litwin, J.A., Bereza, T., Klimek-Piotrowska, W. & Miodonski, A.J. (2012). Vascular architecture of human uterine cervix visualized by corrosion casting and scanning electron microscopy. Hum Reprod 27(3), 727732.Google Scholar
Warreth, A., Polyzois, I., Lee, C.T. & Claffey, N. (2009). Generation of microdamage around endosseous implants. Clin Oral Implants Res 20(12), 13001306.CrossRefGoogle ScholarPubMed
Zioupos, P., Currey, J.D. & Sedman, A.J. (1994). An examination of the micromechanics of failure of bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med Eng Phys 16(3), 203212.CrossRefGoogle ScholarPubMed