Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:19:36.387Z Has data issue: false hasContentIssue false

A “Thickness Series”: Weak Signal Extraction of ELNES in EELS Spectra From Surfaces

Published online by Cambridge University Press:  17 December 2013

Guo-zhen Zhu
Affiliation:
Department of Materials Science and Engineering, Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
Gianluigi A. Botton*
Affiliation:
Department of Materials Science and Engineering, Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

We report a new simple but effective method to extract the weak surface signals from a “thickness series” of recorded electron energy-loss spectra. Using precise thickness measurements and energy-loss near-edge structures measured at increasing thicknesses, we are able to extract the surface and bulk components in the series. The electronic structure and bonding information from SrTiO3 (001) reconstructed surfaces have been successfully obtained by applying this approach. This approach can be applied to study many other cases including absorbed monolayers and beam-sensitive interfaces.

Type
EDGE Special Issue
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonnell, D.A. (1998). Scanning tunneling microscopy and spectroscopy of oxide surfaces. Prog Surf Sci 57(3), 187252.CrossRefGoogle Scholar
Bonnell, D.A. & Garra, J. (2008). Scanning probe microscopy of oxide surfaces: Atomic structure and properties. Rep Prog Phys 71(4), 044501. CrossRefGoogle Scholar
Chiaramonti, A.N. & Marks, L.D. (2005). Atomic resolution transmission electron microscopy of surfaces. J Mater Res 20(7), 16191627.CrossRefGoogle Scholar
Devenyi, G.A., Li, J., Hughes, R.A., Shi, A.-C., Mascher, P. & Preston, J.S. (2009). Epitaxially driven formation of intricate supported gold nanostructures on a lattice-matched oxide substrate. Nano Lett 9(12), 42584263.CrossRefGoogle ScholarPubMed
Domen, K., Kudo, A. & Onishi, T. (1986). Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO–SrTiO3 . J Catal 102(1), 9298.CrossRefGoogle Scholar
Egerton, R.F. (1982). A revised expression for signal/noise ratio in EELS. Ultramicroscopy 9(4), 387390.CrossRefGoogle Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York, Dordrecht, Heidelberg, London: Springer.CrossRefGoogle Scholar
Erdman, N., Poeppelmeier, K.R., Asta, M., Warschkow, O., Ellis, D.E. & Marks, L.D. (2002). The structure and chemistry of the TiO2-rich surface of SrTiO3(001). Nature 419(6902), 5558.CrossRefGoogle Scholar
Erdman, N., Warschkow, O., Asta, M., Poeppelmeier, K.R., Ellis, D.E. & Marks, L.D. (2003). Surface structures of SrTiO3 (001): A TiO2-rich reconstruction with a c (4 × 2) unit cell. J Am Chem Soc 125(33), 1005010056.CrossRefGoogle Scholar
Iddir, H., Komanicky, V., Ogut, S., You, H. & Zapol, P. (2007). Shape of platinum nanoparticles supported on SrTiO3: Experiment and theory. J Phys Chem C 111(40), 1478214789.CrossRefGoogle Scholar
Inada, H., Su, D., Egerton, R.F., Konno, M., Wu, L., Ciston, J., Wall, J. & Zhu, Y. (2011). Atomic imaging using secondary electrons in a scanning transmission electron microscope: Experimental observations and possible mechanisms. Ultramicroscopy 111(7), 865876.CrossRefGoogle Scholar
Jiang, Q.D. & Zegenhagen, J. (1995). SrTiO3(001) surfaces and growth of ultra-thin GdBa2Cu3O7-x films studied by LEED/AES and UHV-STM. Surf Sci 338(1-3), L882L888.CrossRefGoogle Scholar
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy. New York, Dordrecht, Heidelberg, London: Springer.CrossRefGoogle Scholar
Kubo, T. & Nozoye, H. (2003). Surface structure of SrTiO3(100). Surf Sci 542(3), 177191.CrossRefGoogle Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010a). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010b). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.CrossRefGoogle ScholarPubMed
Radtke, G. & Botton, G.A. (2011). Energy loss near-edge structures. In Scanning Transmission Electron Microscopy, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 207246. New York, Dordrecht, Heidelberg, London: Springer.CrossRefGoogle Scholar
Schattschneider, P., Stöger, M., Hébert, C. & Jouffrey, B. (2002). The separation of surface and bulk contributions in ELNES spectra. Ultramicroscopy 93(2), 9197.CrossRefGoogle ScholarPubMed
Shibata, N., Goto, A., Choi, S.Y., Mizoguchi, T., Findlay, S.D., Yamamoto, T. & Ikuhara, Y. (2008). Direct imaging of reconstructed atoms on TiO2 (110) surfaces. Science 322(5901), 570573.CrossRefGoogle ScholarPubMed
Stöger, M., Schattschneider, P., Wei, L.Y., Jouffrey, B. & Eisenmenger-Sittner, C. (2002). Separation of pure elemental and oxygen influenced signal in ELNES. Ultramicroscopy 92(3-4), 285292.CrossRefGoogle ScholarPubMed
Subramanian, A. & Marks, L.D. (2004). Surface crystallography via electron microscopy. Ultramicroscopy 98(2-4), 151157.CrossRefGoogle ScholarPubMed
Tanaka, H., Matsumoto, T., Kawai, T. & Kawai, S. (1993). Surface-structure and electronic property of reduced SrTiO3(100) surface observed by scanning tunneling microscopy spectroscopy. Jpn J Appl Phys 32(3B), 14051409.CrossRefGoogle Scholar
Unser, M., Ellis, J.R., Pun, T. & Eden, M. (1987). Optimal background estimation in EELS. J Microsc 145(Pt 3), 245256.Google ScholarPubMed
Zhu, G.-z., Radtke, G. & Botton, G.A. (2012). Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM. Nature 490(7420), 384387.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhu and Botton Supplementary Material

Supplementary Material 1

Download Zhu and Botton Supplementary Material(File)
File 6.4 KB
Supplementary material: File

Zhu and Botton Supplementary Material

Supplementary Material 2

Download Zhu and Botton Supplementary Material(File)
File 2.2 KB
Supplementary material: File

Zhu and Botton Supplementary Material

Supplementary Material 3

Download Zhu and Botton Supplementary Material(File)
File 2.7 KB