Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T11:59:57.999Z Has data issue: false hasContentIssue false

Study of LEAP® 5000 Deadtime and Precision via Silicon Pre-Sharpened-Microtip™ Standard Specimens

Published online by Cambridge University Press:  28 July 2021

Ty J. Prosa*
Affiliation:
CAMECA Instruments, Inc., 5470 Nobel Drive, Madison, WI 53711, USA
Edward Oltman
Affiliation:
CAMECA Instruments, Inc., 5470 Nobel Drive, Madison, WI 53711, USA
*
*Author for correspondence: Ty J. Prosa, E-mail: [email protected]
Get access

Abstract

Atom probe tomography (APT) is a technique that has expanded significantly in terms of adoption, dataset size, and quality during the past 15 years. The sophistication used to ensure ultimate analysis precision has not kept pace. The earliest APT datasets were small enough that deadtime and background considerations for processing mass spectrum peaks were secondary. Today, datasets can reach beyond a billion atoms so that high precision data processing procedures and corrections need to be considered to attain reliable accuracy at the parts-per-million level. This paper considers options for mass spectrum ranging, deadtime corrections, and error propagation as applied to an extrinsic-silicon standard specimen to attain agreement for silicon isotopic fraction measurements across multiple instruments, instrument types, and acquisition conditions. Precision consistent with those predicted by counting statistics is attained showing agreement in silicon isotope fraction measurements across multiple instruments, instrument platforms, and analysis conditions.

Type
Development and Computation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon, (n.d.). CIAAW.Isotopic com position of the elements 2019. Available at www.ciaaw.org. [Online].Google Scholar
Antcheva, I, Ballintijn, M, Bellenot, B, Biskup, M, Brun, R, Buncic, N, Canal, P, Casadei, D, Couet, O, Fine, V, Franco, L, Ganis, G, Gheata, A, Gonzalez Maline, D & Goto, M (2009). ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization. Comput Phys Commun 180, 24992512.CrossRefGoogle Scholar
Baskaran, M (Ed.) (2012). Handbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer-Verlag. Available at https://www.springer.com/gp/book/9783642106361.CrossRefGoogle Scholar
Brand, WA, Coplen, TB, Vogl, J, Rosner, M & Prohaska, T (2014). Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem 86, 425467.CrossRefGoogle Scholar
Cerezo, A, Smith, GDW & Waugh, AR (1984). The FIM100 — performance of a commercial atom probe system. J Phys C9, 329335.Google Scholar
Coplen, TB & Shrestha, Y (2016). Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC technical report). Pure Appl Chem 88, 12031224.CrossRefGoogle Scholar
Currie, LA (1968). Limits for qualitative detection and quantitative determination: Application to radiochemistry. Anal Chem 40, 586592.CrossRefGoogle Scholar
Da Costa, G, Wang, H, Duguay, S, Bostel, A, Blavette, D & Deconihout, B (2012). Advance in multi-hit detection and quantization in atom probe tomography. Rev Sci Instrum 83, 123709.CrossRefGoogle ScholarPubMed
Danoix, F, Grancher, G, Bostel, A & Blavette, D (2007a). Standard deviations of composition measurements in atom probe analyses. Part I: Conventional 1D atom probe. Ultramicroscopy 107, 734738.CrossRefGoogle Scholar
Danoix, F, Grancher, G, Bostel, A & Blavette, D (2007b). Standard deviations of composition measurements in atom probe analyses–part II: 3D atom probe. Ultramicroscopy 107, 739743.CrossRefGoogle Scholar
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543.CrossRefGoogle Scholar
Diercks, DR, Gorman, BP, Kirchhofer, R, Sanford, N, Bertness, K & Brubaker, M (2013). Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J Appl Phys 114, 184903.CrossRefGoogle Scholar
Ding, T, Wan, D, Bai, R, Zhang, Z, Shen, Y & Meng, R (2005). Silicon isotope abundance ratios and atomic weights of NBS-28 and other reference materials. Geochim Cosmochim Acta 69(23), 54875494.CrossRefGoogle Scholar
Exertier, F, La Fontaine, A, Corcoran, C, Piazolo, S, Belousova, E, Peng, Z, Gault, B, Saxey, DW, Fougerouse, D, Reddy, SM, Pedrazzini, S, Bagot, PAJ, Moody, MP, Langelier, B, Moser, DE, Botton, GA, Vogel, F, Thompson, GB, Blanchard, PT, Chiaramonti, AN, Reinhard, DA, Rice, KP, Schreiber, DK, Kruska, K, Wang, J & Cairney, JM (2018). Atom probe tomography analysis of the reference zircon gj-1: An interlaboratory study. Chem Geol 495, 2735.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Gedcke, DA (2001). How Counting Statistics Controls Detection Limits and Peak Precision. ORTEC Application Note AN59.Google Scholar
Gedcke, DA (2005). How Histogramming and Counting Statistics Affect Peak Position Precision. ORTEC Application Note AN58.Google Scholar
Gilbert, JA, Gershman, DJ, Gloeckler, G, Lundgren, RA, Zurbuchen, TH, Orlando, TM, McLain, J & von Steiger, R (2014). Invited article: Characterization of background sources in space-based time-of-flight mass spectrometers. Rev Sci Instrum 85, 091301.CrossRefGoogle ScholarPubMed
Haley, D, Choi, P & Raabe, D (2015). Guided mass spectrum labelling in atom probe tomography. Ultramicroscopy 159, 338345.CrossRefGoogle ScholarPubMed
Hatzoglou, C, Rouland, S, Radiguet, B, Etienne, A, Costa, GD, Sauvage, X, Pareige, P & Vurpillot, F (2020). Preferential evaporation in atom probe tomography: An analytical approach. Microsc Microanal 26, 689698.CrossRefGoogle ScholarPubMed
Hudson, D, Smith, GDW & Gault, B (2011). Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111, 480486.CrossRefGoogle Scholar
Johnson, LJS, Thuvander, M, Stiller, K, Odén, M & Hultman, L (2013). Blind deconvolution of time-of-flight mass spectra from atom probe tomography. Ultramicroscopy 132, 6064.CrossRefGoogle ScholarPubMed
Kellogg, GL (1982). Measurement of the charge state distribution of field evaporated ions: Evidence for post-ionization. Surf Sci 120, 319333.CrossRefGoogle Scholar
Kelly, TF (2011). Kinetic-Energy discrimination for atom probe tomography. Microsc Microanal 17, 114.CrossRefGoogle ScholarPubMed
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Kinno, T, Tomita, M, Ohkubo, T, Takeno, S & Hono, K (2014). Laser-assisted atom probe tomography of 18O-enriched oxide thin film for quantitative analysis of oxygen. Appl Surf Sci 290, 194198.CrossRefGoogle Scholar
Kitaguchi, HS, Lozano-Perez, S & Moody, MP (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147, 5160.CrossRefGoogle ScholarPubMed
Larson, DJ, Prosa, TJ, Lawrence, D, Geiser, BP, Jones, CM & Kelly, TF (2011). Atom probe tomography for microelectronics. In Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, vol. 2, Haight, R, Ross, F & Hannon, J (Eds.), pp. 407477. London: World Scientific Publishing.CrossRefGoogle Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography: A User's Guide. New York: Springer.CrossRefGoogle Scholar
Lewis, JB, Isheim, D, Floss, C & Seidman, D (2015). C13/C12-ratio determination in nanodiamonds by atom-probe tomography. Ultramicroscopy 159, 248254.CrossRefGoogle ScholarPubMed
Marquis, EA, Araullo-Peters, V, Etienne, A, Fedotova, S, Fujii, K, Fukuya, K, Kuleshova, E, Legrand, A, London, A, Lozano-Perez, S, Nagai, Y, Nishida, K, Radiguet, B, Schreiber, D, Soneda, N, Thuvander, M, Toyama, T, Sefta, F & Chou, P (2016). A round robin experiment: Analysis of solute clustering from atom probe tomography data. Microsc Microanal 22, 666667.CrossRefGoogle Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviour. Mater Sci Eng R 69, 3762.CrossRefGoogle Scholar
Meisenkothen, F, McLean, M, Kalish, I, Samarov, DV & Steel, EB (2020a). Atom probe mass spectrometry of uranium isotopic reference materials. Anal Chem 92, 1138811395.CrossRefGoogle Scholar
Meisenkothen, F, Samarov, DV, Kalish, I & Steel, EB (2020b). Exploring the accuracy of isotopic analyses in atom probe mass spectrometry. Ultramicroscopy 216, 113018.CrossRefGoogle Scholar
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Prakash Kolli, R (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159(Pt 1), 101111.CrossRefGoogle ScholarPubMed
Menand, A, Al Kassab, T, Chambreland, S & Sarrau, JM (1988). Atom-Probe study of aluminum-lithium alloys. J Phys C6, 353358.Google Scholar
Menand, A & Kingham, DR (1984). Isotopic variations in field evaporation charge-state of boron ions. J Phys D: Appl Phys 17, 203208.CrossRefGoogle Scholar
Menand, A & Kingham, DR (1985). Evidence for the quantum mechanical tunnelling of boron ions. J Phys C 18, 45394547.CrossRefGoogle Scholar
Menand, A, Martin, C & Sarrau, JM (1984). Field evaporation charge state of boron ions: A temperature effect study. J Phys 45, 9598.Google Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. Boston, MA: Springer US. Available at http://link.springer.com/10.1007/978-1-4899-7430-3.CrossRefGoogle Scholar
Morishita, Y & Satoh, H (2004). Silicon isotopic zoning in silicon crystals caused by the isotopic fractionation at the crystal–melt interface. Appl Surf Sci 231–232, 907911.CrossRefGoogle Scholar
Müller, EW (1956). Field desorption. Phys Rev 102, 618624.CrossRefGoogle Scholar
Nakamura, S (1986). Round-Robin atom-probe experiment: Preliminary results in Japan. J Phys 47-C2, 459464.Google Scholar
Prosa, TJ (2018). Understanding conditions affecting background in atom probe tomography with implications for analysis of hydrogen. Microsc Microanal 24, 10281029.CrossRefGoogle Scholar
Prosa, TJ, Geiser, BP, Lawrence, D, Olson, D & Larson, DJ (2014). Developing detection efficiency standards for atom probe tomography. SPIE Proc 9173, 917307.Google Scholar
Prosa, TJ & Larson, DJ (2017). Modern focused-Ion-beam-based site-specific specimen preparation for atom probe tomography. Microsc Microanal 23, 194209.CrossRefGoogle ScholarPubMed
Prosa, TJ, Lenz, DR, Payne, TR, Oltman, E, Bunton, JH, Ulfig, RM & Larson, DJ (2013a). Novel evaporation control concepts. In Frontiers of Characterization and Metrology for Nanoelectronics, Secula, EM & Seiler, DG (Eds.), , pp. 269272. Gaithersburg, MD: NIST.Google Scholar
Prosa, TJ, Olson, D, Geiser, B, Larson, DJ, Henry, K & Steel, E (2013b). Analysis of implanted silicon dopant profiles. Ultramicroscopy 132, 179185.CrossRefGoogle Scholar
Prosa, TJ, Reinhard, DA, Francois-Saint-Cyr, HG, Martin, I, Rice, KP, Chen, Y & Larson, DJ (2017). Evolution of atom probe data collection toward optimized and fully automated acquisition. Microsc Microanal 23, 616617.CrossRefGoogle Scholar
Rolander, U & Andren, H-O (1989). Statistical correction for pile-Up in the atom-probe detector system. Coll Phys 50, 529534.Google Scholar
Rolander, U & Andren, H-O (1994). Study of proper conditions for quantitative atom-probe analysis. Appl Surf Sci 76–77, 392402.CrossRefGoogle Scholar
Ronsheim, P, Flaitz, P, Hatzistergos, M, Molella, C, Thompson, K & Alvis, R (2008). Impurity measurements in silicon with D-SIMS and atom probe tomography. Appl Surf Sci 255, 15471550.CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.CrossRefGoogle ScholarPubMed
Stephan, T, Heck, PR, Isheim, D & Lewis, JB (2015). Correction of dead time effects in laser-induced desorption time-of-flight mass spectrometry: Applications in atom probe tomography. Int J Mass Spectrom 379, 4651.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K & Kobayashia, Y (2011). Quantitative analysis of carbon content in cementite in steel by atom probe tomography. Ultramicroscopy 111, 12331238.CrossRefGoogle ScholarPubMed
Thuvander, M, Shinde, D, Rehan, A, Ejnermark, S & Stiller, K (2019). Improving compositional accuracy in APT analysis of carbides using a decreased detection efficiency. Microsc Microanal 25, 454461.CrossRefGoogle ScholarPubMed
Tsong, TT, Ng, YS & Krishnaswamy, SV (1978). Quantification of atom-probe FIM data and an application to the investigation of surface segregation of alloys. Appl Phys Lett 32, 778780.CrossRefGoogle Scholar
Vallerga, JV & McPhate, JB (2000). Optimization of the readout electronics for microchannel plate delay line anodes. In Instrumentation for UV/EUV Astronomy and Solar Missions, vol. 4139, Fineschi, S, Korendyke, CM, Siegmund, OHW & Woodgate, BE (Eds.), pp. 3442. International Society for Optics and Photonics. Available at https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4139/0000/Optimization-of-the-readout-electronics-for-microchannel-plate-delay-line/10.1117/12.410543.short.CrossRefGoogle Scholar
Yao, L, Gault, B, Cairney, JM & Ringer, SP (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90, 121129.CrossRefGoogle Scholar