Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T11:07:38.617Z Has data issue: false hasContentIssue false

Structural Properties and ELNES of Polycrystalline and Nanoporous Mg3N2

Published online by Cambridge University Press:  10 January 2020

Olivia Wenzel*
Affiliation:
Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131Karlsruhe, Germany
Viktor Rein
Affiliation:
Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131Karlsruhe, Germany
Radian Popescu
Affiliation:
Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131Karlsruhe, Germany
Claus Feldmann
Affiliation:
Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131Karlsruhe, Germany
Dagmar Gerthsen
Affiliation:
Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131Karlsruhe, Germany
*
*Author for correspondence: Olivia Wenzel, E-mail: [email protected]
Get access

Abstract

Nanoporous, high-purity magnesium nitride (Mg3N2) was synthesized with a liquid ammonia-based process, for potential applications in optoelectronics, gas separation and catalysis, since these applications require high material purity and crystallinity, which has seldom been demonstrated in the past. One way to evaluate the degree of crystalline near-range order and atomic environment is electron energy-loss spectroscopy (EELS) in a transmission electron microscope. However, there are hardly any data on Mg3N2, which makes identification of electron energy-loss near-edge structure (ELNES) features difficult. Therefore, we have studied nanoporous Mg3N2 with EELS in detail in comparison to EELS spectra of bulk Mg3N2, which was analyzed as a reference material. The N-K and Mg-K edges of both materials are similar. Despite having the same crystal structure, however, there are differences in fine-structural features, such as shifts and absences of peaks in the N-K and Mg-K edges of nanoporous Mg3N2. These differences in ELNES are attributed to coordination changes in nanoporous Mg3N2 caused by the significantly smaller crystallite size of 2–6 nm compared to the larger (25–125 nm) crystal size in a bulk material.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash-Kurlander, U, Shter, GE, Kababya, S, Schmidt, A & Grader, GS (2013). Playing hardball with hydrogen: Metastable mechanochemical hydrogenation of magnesium nitride. J Phys Chem C 117, 12371246.CrossRefGoogle Scholar
Berger, SD, McKenzie, DR & Martin, PJ (1988). EELS analysis of vacuum arc-deposited diamond-like films. Philos Mag Lett 57, 285290.CrossRefGoogle Scholar
Cabaret, D, Sainctavit, P, Ildefonse, P & Flank, A-M (1996). Full multiple-scattering calculations on silicates and oxides at the Al K edge. J Phys Condens Matter 8, 36913704.CrossRefGoogle Scholar
Deepak, FL (2018). Metal Nanoparticles and Clusters. Cham: Springer International Publishing. Available at http://link.springer.com/10.1007/978-3-319-68053-8 (accessed January 9, 2019).CrossRefGoogle Scholar
Dennenwaldt, TK (2013). Electron Energy Loss Spectroscopy of Novel Oxide- and Nitride-based Nanostructured Materials. München: Ludwig Maximilians-Universität München.Google Scholar
Épicier, T, Le Bossé, J-C, Perriat, P, Roux, S & Tillement, O (2011). A strategy for simulating Electron Energy-Loss Near-Edge Structures of nanoparticles: Application to size effects in Gd2O3. Eur Phys J Appl Phys 54, 33511.CrossRefGoogle Scholar
Fang, CM, de Groot, RA, Bruls, RJ, Hintzen, HT & de With, G (1999). Ab initio band structure calculations of Mg3N2 and MgSiN2. J Phys Condens Matter 11, 48334842.CrossRefGoogle Scholar
Feldhoff, A, Pippel, E & Woltersdorf, J (1999). Structure and composition of ternary carbides in carbonfibre reinforced Mg-Al alloys. Philos Mag A 79, 12631277.CrossRefGoogle Scholar
Gladkaya, IS, Kremkova, GN & Bendeliani, NA (1993). Phase diagram of magnesium nitride at high pressures and temperatures. J Mater Sci Lett 12, 15471548.Google Scholar
Glasson, DR & Jayaweera, SAA (2007). Formation and reactivity of nitrides II. Calcium and magnesium nitrides and calcium cyanamide. J Appl Chem 18, 7783.CrossRefGoogle Scholar
Gregory, DH (1999). Structural families in nitride chemistry. J Chem Soc Dalton Trans (3), 259270.CrossRefGoogle Scholar
Gregory, DH (2001). Nitride chemistry of the s-block elements. Coord Chem Rev 215, 301345.CrossRefGoogle Scholar
Hao, J, Li, Y, Zhou, Q, Liu, D, Li, M, Li, F, Lei, W, Chen, X, Ma, Y, Cui, Q, Zou, G, Liu, J & Li, X (2009). Structural phase transformations of Mg3N2 at high pressure: Experimental and theoretical studies. Inorg Chem 48, 97379741.CrossRefGoogle Scholar
Heyns, AM, Prinsloo, LC, Range, K-J & Stassen, M (1998). The vibrational spectra and decomposition of calcium nitride (Ca3N2) and magnesium nitride (Mg3N2). J Solid State Chem 137, 3341.CrossRefGoogle Scholar
Hu, J, Bando, Y, Zhan, J, Zhi, C & Golberg, D (2006). Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. Nano Lett 6, 11361140.CrossRefGoogle ScholarPubMed
Ichikawa, T, Leng, HY, Isobe, S, Hanada, N & Fujii, H (2006). Recent development on hydrogen storage properties in metal–N–H systems. J Power Sources 159, 126131.CrossRefGoogle Scholar
Janiak, C, Meyer, H-J, Gudat, D & Kurz, P (2018). In Riedel Moderne Anorganische Chemie, Riedel, E & Meyer, H-J (Eds.). Berlin, Boston: DE GRUYTER. Available at https://www.degruyter.com/view/books/9783110249019/9783110249019/9783110249019.xml (accessed May 24, 2019).CrossRefGoogle Scholar
Keast, VJ, Scott, AJ, Brydson, R, Williams, DB & Bruley, J (2001). Electron energy-loss near-edge structure - A tool for the investigation of electronic structure on the nanometre scale. J Microsc 203, 135175.CrossRefGoogle ScholarPubMed
Klabunde, KJ, Stark, J, Koper, O, Mohs, C, Park, DG, Decker, S, Jiang, Y, Lagadic, I & Zhang, D (1996). Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. Available at https://pubs.acs.org/doi/10.1021/jp960224x (accessed January 16, 2019).Google Scholar
Leinweber, P, Kruse, J, Walley, FL, Gillespie, A, Eckhardt, K-U, Blyth, RIR & Regier, T (2007). Nitrogen K-edge XANES—an overview of reference compounds used to identify “unknown” organic nitrogen in environmental samples. J Synchrotron Radiat 14, 500511.CrossRefGoogle ScholarPubMed
Lenc, JF, Miller, WE & Winsch, IO (1973). Process for recovering uranium and plutonium from irradiated nuclear fuel oxides. US Patent 3867510 A.Google Scholar
Lorenz, H, Peun, T & Orgzall, I (1997). Kinetic and thermodynamic investigation of cBN formation in the system BN-Mg3N2. Appl Phys A Mater Sci Process 65, 487495.CrossRefGoogle Scholar
Mays, CW, Vermaak, JS & Kuhlmann-Wilsdorf, D (1968). On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci 12, 134140.CrossRefGoogle Scholar
Moreno Armenta, M, Reyes-Serrato, A & Avalos Borja, M (2000). Ab initio determination of the electronic structure of beryllium-, aluminum-, and magnesium-nitrides: A comparative study. Phys Rev B 62, 48904898.CrossRefGoogle Scholar
Mullins, OC, Mitra-Kirtley, S, Elp, JV & Cramer, SP (1993). Molecular structure of nitrogen in coal from XANES spectroscopy. Appl Spectrosc 47(8), 12681275.CrossRefGoogle Scholar
Murata, T, Itatani, K, Howell, FS, Kishioka, A & Kinoshita, M (1993). Preparation of magnesium nitride powder by low-pressure chemical vapor deposition. J Am Ceram Soc 76, 29092911.CrossRefGoogle Scholar
Nakanishi, K & Ohta, T (2009). Verification of the FEFF simulations to K-edge XANES spectra of the third row elements. J Phys Condens Matter 21, 104214.CrossRefGoogle ScholarPubMed
Nezafati, M, Giri, A, Hofmeister, C, Cho, K, Schneider, MM, Zhou, L, Sohn, Y & Kim, C-S (2016). Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process. Acta Mater 115, 295307.CrossRefGoogle Scholar
Niu, CW, Yang, K, Lv, Y, Wei, W, Dai, Y & Huang, B (2010). Electronic and magnetic properties of C-doped Mg3N2: A density functional theory study. Solid State Commun 150, 22232226.CrossRefGoogle Scholar
Oehl, N, Knipper, M, Parisi, J, Plaggenborg, T & Kolny-Olesiak, J (2015). Size-dependent lattice distortion in ε-Ag3 Sn alloy nanoparticles. J Phys Chem C 119, 1445014454.Google Scholar
Orhan, E, Jobic, S, Brec, R, Marchand, R & Saillard, J-Y (2002). Binary nitrides α-M3N2 (M = Be, Mg, Ca): A theoretical study. J Mater Chem 12, 24752479.CrossRefGoogle Scholar
Parkin, IP & Nartowski, AM (1998). Solid state metathesis routes to group IIIa nitrides: Comparison of Li3N, NaN3, Ca3N2 and Mg3N2 as nitriding agents. Polyhedron 17, 26172622.CrossRefGoogle Scholar
Partin, DE, Williams, DJ & O'Keeffe, M (1997). The crystal structures of Mg3N2 and Zn3N2. J Solid State Chem 132, 5659.CrossRefGoogle Scholar
Reckeweg, O, Molstad, JC & DiSalvo, FJ (2001). Magnesium nitride chemistry. J Alloys Compd 315, 134142.CrossRefGoogle Scholar
Rein, V, Wenzel, O, Popescu, R, Gerthsen, D & Feldmann, C (2018). Liquid-ammonia synthesis of microporous Mg3N2 showing intense red-light emission. J Mater Chem C 6, 44504456.CrossRefGoogle Scholar
Römer, SR, Dörfler, T, Kroll, P & Schnick, W (2009). Group II element nitrides M3N2 under pressure: A comparative density functional study. Phys Status Solidi (b) 246, 16041613.CrossRefGoogle Scholar
Schneider, CA, Rasband, WS & Eliceiri, KW (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.CrossRefGoogle ScholarPubMed
Schubert, K (1982). On the binding in two-component nitrides. Cryst Res Technol 17, 553564.CrossRefGoogle Scholar
Smith, JW, Lam, RK, Shih, O, Rizzuto, AM, Prendergast, D & Saykally, RJ (2015). Properties of aqueous nitrate and nitrite from X-ray absorption spectroscopy. J Chem Phys 143, 084503.CrossRefGoogle ScholarPubMed
Soto, G, Díaz, JA, de la Cruz, W, Reyes, A & Samano, EC (2004). Amorphous magnesium nitride films produced by reactive pulsed laser deposition. J Non-Cryst Solids 342, 6569.CrossRefGoogle Scholar
Stadelmann, PA (1987). EMS - A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145.CrossRefGoogle Scholar
Toth, VL (1971). Transition metal carbides and nitrides. Angew Chem 84, 960960.Google Scholar
Toyoura, K, Goto, T, Hachiya, K & Hagiwara, R (2005). Structural and optical properties of magnesium nitride formed by a novel electrochemical process. Electrochim Acta 51, 5660.CrossRefGoogle Scholar
Trcera, N, Cabaret, D, Rossano, S, Farges, F, Flank, A-M & Lagarde, P (2009). Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure. Phys Chem Miner 36, 241257.CrossRefGoogle Scholar
Vissokov, G (2005). Synthesis of nanodispersed magnesium nitride in electric-arc plasma. J Univ Chem Technol Metall 40, 193198.Google Scholar
Wang, P, Lombi, E, Zhao, F-J & Kopittke, PM (2016). Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci 21, 699712.CrossRefGoogle ScholarPubMed
Weissmüller, J (2002). Comment on “lattice contraction and surface stress of fcc nanocrystals”. J Phys Chem B 106, 889890.CrossRefGoogle Scholar
Wong, J, George, GN, Pickering, IJ, Rek, ZU, Rowen, M, Tanaka, T, Via, GH, DeVries, B, Vaughan, DEW & Brown, GE (1994). New opportunities in XAFS investigation in the 1–2 keV region. Solid State Commun 92, 559562.CrossRefGoogle Scholar
Yoshimura, T, Tamenori, Y, Iwasaki, N, Hasegawa, H, Suzuki, A & Kawahata, H (2013). Magnesium K-edge XANES spectroscopy of geological standards. J Synchrotron Radiat 20, 734740.CrossRefGoogle ScholarPubMed
Zhang, G & Wang, X (2013). A facile synthesis of covalent carbon nitride photocatalysts by co-polymerization of urea and phenylurea for hydrogen evolution. J Catal 307, 246253.CrossRefGoogle Scholar
Zhang, ZJ, Fan, S & Lieber, CM (1995). Growth and composition of covalent carbon nitride solids. Appl Phys Lett 66, 35823584.CrossRefGoogle Scholar
Ziegler, A, Idrobo, JC, Cinibulk, MK, Kisielowski, C, Browning, ND & Ritchie, RO (2004). Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science 306, 17681770.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wenzel et al. supplementary material

Wenzel et al. supplementary material

Download Wenzel et al. supplementary material(File)
File 549.8 KB