Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T09:26:06.264Z Has data issue: false hasContentIssue false

Static and Dynamic Charges: Changing Perspectives and Aims in Electron Microscopy

Published online by Cambridge University Press:  01 December 2004

Archie Howie
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
Get access

Abstract

In the context of electron microscopists' changing attitudes to charging effects, some basic aspects of these phenomenona are surveyed. Methods of mapping internal charge distributions such as doping levels in semiconductors, trap distributions, or internal electric fields in insulators are discussed.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baroni, T.C., Griffin, B.J., & Lincoln, F.J. (1999). Spatial correlation of elemental impurities and charge contrast image detail in gibbsite. Microsc Microanal 5 (Suppl. 2), 270271.Google Scholar
Bleloch, A.L., Howie, A., & Milne, R.H. (1989). High resolution secondary electron imaging and spectroscopy. Ultramicroscopy 31, 99110.Google Scholar
Burgi, L., Sirringhaus, H., & Friend, R.H. (2002). Noncontact potentiometry of polymer field effect transistors. Appl Phys Lett 80, 29132915.Google Scholar
Cazaux, J. (1999). Some considerations on the secondary electron emission δ, from e-irradiated insulators. J Appl Phys 85, 11371147.Google Scholar
Doehne, E. (1998). Charge contrast: Some ESEM observations of a new/old phenomenon. Microsc Microanal 4 (suppl. 2), 292293.Google Scholar
Doehne, E. & Carson, D. (2001). Charge contrast imaging (CCI) in the environmental electron microscope: Optimizing operating parameters for calcite. Microsc Microanal 7 (Suppl. 2), 780781.Google Scholar
El Gomati, M.M. & Wells, T.C.R. (2001a). Imaging doped regions in a semiconductor with very low energy SEM and Auger electrons. Proceedings of the EMAG Conference (Dundee). Inst. of Physics Conf. Ser. 168, 489492.
El Gomati, M.M. & Wells, T.C.R. (2001b). Very low energy electron microscopy of doped semiconductors. Appl Phys Lett 79, 29312933.Google Scholar
Elliott, S.L., Broom, R.F., & Humphreys, C.J. (2002). Dopant profiling with the scanning electron microscope—A study of Si. J Appl Phys 91, 91169122.Google Scholar
Griffin, B.J. (1997). A new mechanism for imaging non-conductive materials. Microsc Microanal 3 (Suppl. 2), 11971198.Google Scholar
Hansen, P.J., Stausser, Y.E., Erickson, A.N., Tarsa, E.J., Kozodoy, P., Brazel, E.G., Ibbetson, J.P., Mishra, U., Narayanamurta, V., DenBaars, S.P., & Speck, J.S. (1998). Scanning capacitance microscopy imaging of threading dislocations in GaN films. Appl Phys Lett 72, 22472249.Google Scholar
Howie, A. (2000). Imaging of electronic structure: Achievements, competition, challenges. Proceedings of the EUREM 12 Conference, vol. I, Frank, L. & Čiampor, F. (Eds.), pp. 519522. Brno: Czech Society For Electron Microscopy.
Janssen, A.P., Akhter, P., Harland, C.J., & Venables, J.A. (1980). High spatial resolution surface potential measurements using secondary electrons. Surf Sci 93, 453470.Google Scholar
Jiang, N., Qui, J., Gaeta, A.L., & Silcox, J. (2002). Nanoscale modification of optical properties in Ge-doped SiO2 glass by electron beam irradiation. Appl Phys Lett 80, 20052007.Google Scholar
Joy, D.C. & Joy, C.S. (1996). Low voltage scanning electron microscopy. Micron 27, 247263.Google Scholar
Lee, M.R. (2000). Imaging of calcite by optical and SEM cathodoluminescence. Microsc Anal (September), 1516.Google Scholar
Nonnemacher, M., O'Boyle, M.P., & Wickramasinghe, H.K. (1991). Kelvin probe microscopy. Appl Phys Lett 58, 29212923.Google Scholar
O'Boyle, M.P., Hwang, T.T., & Wickramasinghe, H.K. (1999). Atomic force microscopy of work functions on the atomic scale. Appl Phys Lett 74, 26412643.Google Scholar
Perovic, D.D., Castell, M.R., Howie, A., Lavoie, C., Tiedje, T., & Cole, J.S.W. (1995). Field-emission SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy 58, 104113.Google Scholar
Perovic, D.D., Turan, R., & Castell, M.R. (1998). Quantitative imaging of semiconductor doping distributions using a scanning electron microscope. In The Electron, Kirkland, A. & Brown, P.D. (Eds.), pp. 258265. London: IOM Communications Ltd.
Sealey, C.P., Castell, M.R., & Wilshaw, P.R. (2000). Mechanism for secondary electron dopant contrast in the SEM. J Electron Microsc 49, 311321.Google Scholar
Steeds, J.W., Charles, S.J., Davies, J., & Griffin, I. (2000). Photoluminescence microscopy of TEM irradiated diamond. Diamond and Rel Mat 9, 397403.Google Scholar
Steeds, J.W., Evans, G.A., Danks, L.R., Furkert, S., Voegli, W., Ismail, M.M., & Carosella, F. (2002). Transmission electron microscope radiation damage of 4H and 6H SiC studied by photoluminescence spectroscopy. Diamond and Rel Mat 11, 19231945.Google Scholar
Stokes, D.J., Thiel, B.L., & Donald, A.M. (2000). Dynamic secondary electron contrast effects in liquid systems studied in environmental scanning electron microscopy. Scanning 22, 357365.Google Scholar
Toth, M., Phillips, M.R., Craven, J.P., Thiel, B.L., & Donald, A.M. (2002a). Electric fields produced by electron irradiation of insulators in a low vacuum environment. J Appl Phys 91, 44924499.Google Scholar
Toth, M., Phillips, M.R., Thiel, B.L., & Donald, A.M. (2002b). Electron imaging of dielectrics under simultaneous electron–ion irradiation. J Appl Phys 91, 44794491.Google Scholar
Venables, D., Jain, H., & Collins, D.C. (1998). Secondary electron imaging as a two-dimensional dopant profiling technique: Revue and update. J Vac Sci and Technol B 16, 362366.Google Scholar
Wells, O.C. (1974). Scanning Electron Microscopy. New York: McGraw-Hill.
Williams, C.C., Slinkman, J., Hough, W.P., & Wickramasinghe, H.K. (1989). Lateral dopant profiling with 200nm resolution by scanning capacitance microscopy. Appl Phys Lett 55, 16621664.Google Scholar