Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T09:20:17.587Z Has data issue: false hasContentIssue false

State-of-the-Art Three-Dimensional Chemical Characterization of Solid Oxide Fuel Cell Using Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry Tomography

Published online by Cambridge University Press:  21 December 2016

Agnieszka Priebe*
Affiliation:
Université Grenoble Alpes, F-38000 GrenobleFrance CEA (French Alternative Energies and Atomic Energy Commission), LETI (Research Institute For Electronics And Information Technologies), DTSI (Department of Silicon Technologies), MINATEC Campus, F-38054 Grenoble, France
Pierre Bleuet
Affiliation:
Université Grenoble Alpes, F-38000 GrenobleFrance CEA (French Alternative Energies and Atomic Energy Commission), LETI (Research Institute For Electronics And Information Technologies), DTSI (Department of Silicon Technologies), MINATEC Campus, F-38054 Grenoble, France
Gael Goret
Affiliation:
Université Grenoble Alpes, F-38000 GrenobleFrance CEA (French Alternative Energies and Atomic Energy Commission), LETI (Research Institute For Electronics And Information Technologies), DTSI (Department of Silicon Technologies), MINATEC Campus, F-38054 Grenoble, France
Jerome Laurencin
Affiliation:
Université Grenoble Alpes, F-38000 GrenobleFrance CEA, LITEN, MINATEC Campus, F-38054 Grenoble, France
Dario Montinaro
Affiliation:
SOLIDpower S.p.a., 38017 Mezzolombardo, Italy
Jean-Paul Barnes
Affiliation:
Université Grenoble Alpes, F-38000 GrenobleFrance CEA (French Alternative Energies and Atomic Energy Commission), LETI (Research Institute For Electronics And Information Technologies), DTSI (Department of Silicon Technologies), MINATEC Campus, F-38054 Grenoble, France
*
*Corresponding author. [email protected]
Get access

Abstract

In this paper the potential of time-of-flight secondary ion mass spectroscopy combined with focused ion beam technology to characterize the composition of a solid oxide fuel cell (SOFC) in three-dimension is demonstrated. The very high sensitivity of this method allows even very small amounts of elements/compounds to be detected and localized. Therefore, interlayer diffusion of elements between porous electrodes and presence of pollutants can be analyzed with a spatial resolution of the order of 100 nm. However, proper element recognition and mass interference still remain important issues. Here, we present a complete elemental analysis of the SOFC as well as techniques that help to validate the reliability of obtained results. A discussion on origins of probable artifacts is provided.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, J.-P., Djomeni, L., Minoret, S., Mourier, T., Fabbri, J.-M., Audoit, G. & Fadloun, S. (2016). Focused ion beam time-of-flight secondary ion mass spectroscopy tomography of through-silicon vias for 3D integration. J Vac Sci Technol B 34, 03H137-103H137-5.Google Scholar
Benninghoven, A., Rüdenauer, F.G. & Werner, H.W. (1987). Secondary Ion Mass Spectrometry. New York, NY: Wiley.Google Scholar
Benoit, D., Bresse, J.-F., Van’t Dack, L., Werner, H. & Wernisch, J. (1996). Microbeam and Nanobeam Analysis, Microchimica Acta 13(Suppl), 117133.CrossRefGoogle Scholar
Bleuet, P., Audoit, G., Barnes, J.P., Bertheau, J., Dabin, Y., Dansas, H., Fabbri, J.M., Florin, B., Gergaud, P., Grenier, A., Haberfehlner, G., Lay, E., Laurencin, J., Serra, R. & Villanova, J. (2013). Specifications for hard condensed matter specimens for three-dimensional high-resolution tomographies. Microsc Microanal 19, 726739.CrossRefGoogle ScholarPubMed
Bleuet, P., Cloetens, P., Gergaud, P., Mariolle, D., Chevalier, N., Tucoulou, R., Susini, J. & Chabli, A. (2009). A hard X-ray nanoprobe for scanning and projection nanotomography. Rev Sci Instrum 80, 056101.Google Scholar
Braint, C. (1998). Auger Electron Spectroscopy. London: Academic Press Inc.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (2005). Introduction to Focused Ion Beams. New York, NY: Springer.Google Scholar
Golosio, B., Simionovici, A., Somogyi, A., Lemelle, L., Chukalina, M. & Brunetti, A. (2003). Internal elemental microanalysis combining X-ray fluorescence, Compton and transmission tomography. J Appl Phys 94, 145156.Google Scholar
Hammond, J.S., Fisher, G.L., Bryan, S.R., Kanarbik, R. & Moller, P. (2013). FIB-TOF tomography of solid oxide fuel cells. Microsc Microanal 19, 672673.CrossRefGoogle Scholar
Hofmann, S. (2013). Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. A User-Oriented Guide. Berlin: Springer-Verlag.Google Scholar
Kanarbik, R., Möller, P., Kivi, I. & Lust, E. (2013). Application of FIB-TOF-SIMS and FIB-SEM-EDX methods for the analysis of element mobility in solid oxide fuel cells. ECS Trans 57, 581587.CrossRefGoogle Scholar
Karydas, A.-G., Sokaras, D., Zarkadas, Ch., Grlj, N., Pelicon, P., Zitnik, M., Schutz, R., Malzer, W. & Kanngiesserc, B. (2007). 3D Micro PIXE—a new technique for depth-resolved elemental analysis. J Anal At Spectrom 22, 12601265.Google Scholar
Kishimoto, H., Yashiro, K., Shimonosono, T., Brito, M.E., Yamaji, K., Horita, T., Yokokawa, H. & Mizusaki, J. (2012). In situ analysis on the electrical conductivity degradation of NiO doped yttria stabilized zirconia electrolyte by micro-Raman spectroscopy. Electrochim Acta 82, 263267.Google Scholar
Kwakman, L., Franz, G., Taklo, M.M.V., Klumpp, A. & Ramm, P. (2011). Characterization and failure analysis of 3D integrated systems using a novel plasma‐FIB system. AIP Conf Proc 1395, 269273.Google Scholar
Linderoth, S., Bonanos, N., Jensen, K.V. & Bilde-Sorensen, J.B. (2001). Effect of NiO-to-Ni transformation on conductivity and structure of yttria-stabilized ZrO2. J Am Ceram Soc 84, 26522656.CrossRefGoogle Scholar
Liu, Y.L., Primdahl, S. & Mogensen, M. (2003). Effects of impurities on microstructure in Ni/YSZ–YSZ half-cells for SOFC. Solid State Ionics 161, 110.Google Scholar
Niehuis, E., Moellers, R., Kollmer, F., Arlinghaus, H., Bernard, L., Hug, H.J., Vranjkovic, S., Dianoux, R. & Scheidemann, A. (2014). In-situ TOF-SIMS and SFM measurements providing true 3D chemical characterization of inorganic and organic nanostructures. Microsc Microanal 20, 20862087.CrossRefGoogle Scholar
Niemantsverdriet, J.W. (2007). Spectroscopy in Catalysis. Weinheim: Wiley-VCH.Google Scholar
Priebe, A., Goret, G., Bleuet, P., Audoit, G., Laurencin, J. & Barnes, J.-P. (2016). 3D correlative morphological and elemental characterization of materials at the deep sub-micrometer scale. J Microsc 264, 247251.CrossRefGoogle Scholar
Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. (2007). Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587597.CrossRefGoogle ScholarPubMed
Singhal, S.C. & Kendal, K. (2003). High Temperature and Solid Oxide Fuel Cells—Fundamentals, Design and Applications. Oxford: Elsevier.Google Scholar
Stephan, T. (2001). TOF-SIMS in cosmochemistry. Planet Space Sci 49, 859906.Google Scholar
Yao, N. (2007). Focused Ion Beam Systems: Basics and Applications. Cambridge: Cambridge University Press.Google Scholar