Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T01:14:38.763Z Has data issue: false hasContentIssue false

Spatial Distribution of Dislocations in Relation to a Substructure in High-Quality GaN Film

Published online by Cambridge University Press:  06 August 2013

Mino Yang
Affiliation:
Analytical Engineering Group, Samsung Advanced Institute of Technology (SAIT), Youngin, Gyeonggi-do 446-712, Korea School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea
Chong-Don Kim
Affiliation:
Analysis Lab, Samsung Corning Precision Materials, Gumi, Gyeongsangbuk-do 730-717, Korea
Hee-Goo Kim
Affiliation:
Analytical Engineering Group, Samsung Advanced Institute of Technology (SAIT), Youngin, Gyeonggi-do 446-712, Korea
Cheol-Woong Yang*
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The dislocation distribution of high-quality single-crystal gallium nitride (GaN) films grown by the hybrid vapor phase epitaxy was analyzed. This study examined the domain structure of GaN from the dislocation distribution on the macroscale by optical microscopy. The surface structure of GaN consisted of domains with microcolumns as the substructure. The inner domains contained a lower density of dislocations but a large number of these dislocations were observed along the domain boundaries. The existence of a domain boundary structure doubly increased the total dislocation density.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. (1986). Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett 48, 353355.10.1063/1.96549Google Scholar
Andre, Y., Trassoudaine, A., Tourret, J., Cadoret, R., Gil, E., Castelluci, D., Aoude, O. & Disseix, P. (2007). Low dislocation density high-quality thick hydride vapour phase epitaxy (HVPE) GaN layers. J Crystal Growth 306, 8693.10.1016/j.jcrysgro.2006.12.081Google Scholar
Detchprohm, T., Hiramatsu, K., Amano, H. & Akasaki, I. (1992). Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer. Appl Phys Lett 61, 26882690.10.1063/1.108110Google Scholar
Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, T., Heggie, M.I., Öberg, S. & Briddon, P.R. (1997). Theory of threading edge and screw dislocations in GaN. Phys Rev Lett 79, 36723675.Google Scholar
Follstaedt, D.M., Missert, N.A., Koleske, D.D., Mitchell, C.C. & Cross, K.C. (2003). Plan-view image contrast of dislocations in GaN. Appl Phys Lett 83, 47974799.10.1063/1.1632540Google Scholar
Gmeinwieser, N. & Schwarz, U.T. (2007). Pattern formation and directional and spatial ordering of edge dislocations in bulk GaN: Microphotoluminescence spectra and continuum elastic calculations. Phys Rev B 75, 245213.10.1103/PhysRevB.75.245213Google Scholar
Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y. & Maeda, T. (1999). Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: Effects of reactor pressure in MOVPE growth. Phys Stat Sol (a) 176, 535543.10.1002/(SICI)1521-396X(199911)176:1<535::AID-PSSA535>3.0.CO;2-I3.0.CO;2-I>Google Scholar
Moram, M.A., Oliver, R.A., Kappers, M.J. & Humphreys, C.J. (2009). The spatial distribution of threading dislocations in gallium nitride films. Adv Mater 21, 39413944.10.1002/adma.200901095Google Scholar
Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T. & Mukai, T. (1995). Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn J Appl Phys 34(10B), L1332L1335.10.1143/JJAP.34.L1332Google Scholar
Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W. & Asif Khan, M. (1996). Growth defects in GaN films on sapphire: The probable origin of threading dislocations. J Mater Res 11, 580592.10.1557/JMR.1996.0071Google Scholar
Oliver, R.A., Kappers, M.J. & Humphreys, C.J. (2006a). Insights into the origin of threading dislocations in GaN/Al2O3 from atomic force microscopy. Appl Phys Lett 89, 011914.10.1063/1.2219747Google Scholar
Oliver, R.A., Kappers, M.J., Sumner, J., Datta, R. & Humphreys, C.J. (2006b). Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3. J Crystal Growth 289, 506514.10.1016/j.jcrysgro.2005.12.075Google Scholar
Paisley, M.J. & Davis, R.F. (1993). Molecular beam epitaxy of nitride thin films. J Crystal Growth 127, 136142.10.1016/0022-0248(93)90592-KGoogle Scholar
Pond, R.C. (1995). On the characterization of interfacial defects using high resolution electron microscopy. Interface Sci 2, 299310.10.1007/BF00222621Google Scholar
Qian, W., Skowronski, M., de Graef, M., Doverspike, K., Rowland, L.B. & Gaskill, D.K. (1995). Microstructural characterization of α-GaN films grown on sapphire by organometallic vapor phase epitaxy. Appl Phys Lett 66, 12521254.10.1063/1.113253Google Scholar
Romanov, A.E., Fini, P. & Speck, J.S. (2003). Modeling the extended defect evolution in lateral epitaxial overgrowth of GaN: Subgrain stability. J Appl Phys 93, 106114.10.1063/1.1524013Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum.10.1007/978-1-4757-2519-3Google Scholar
Wu, X.H., Fini, P., Tarsa, E.J., Heying, B., Keller, S., Mishra, U.K., Den Baars, S.P. & Speck, J.S. (1998). Dislocation generation in GaN heteroepitaxy. J Crystal Growth 189/190, 231243.10.1016/S0022-0248(98)00240-1Google Scholar