Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T16:46:12.815Z Has data issue: false hasContentIssue false

Serial Block-Face Imaging and its Potential for Reconstructing Diminutive Cell Systems: A Case Study from Arthropods

Published online by Cambridge University Press:  20 February 2014

Elisabeth Lipke*
Affiliation:
Allgemeine und Systematische Zoologie, Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, J.-S.-Bach-Str. 11/12, D-17487 Greifswald, Germany
Thomas Hörnschemeyer
Affiliation:
Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology, Georg-August-University, Göttingen, Germany
Anahita Pakzad
Affiliation:
Gatan Inc., Pleasanton, CA, USA
Christopher R. Booth
Affiliation:
Gatan Inc., Pleasanton, CA, USA
Peter Michalik
Affiliation:
Allgemeine und Systematische Zoologie, Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, J.-S.-Bach-Str. 11/12, D-17487 Greifswald, Germany Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Until recently, three-dimensional reconstruction on an ultrastructural level was only possible using serial section transmission electron microscopy (ssTEM). However, ssTEM is highly challenging and prone to artifacts as, e.g., section loss and image distortions. New methods, such as serial block-face scanning electron microscopy (SBFSEM) overcome these limitations and promise a high lateral resolution. However, little is known about the usability of SBFSEM in diminutive, but highly complex cellular systems. We used spider sperm (~3 µm in diameter), which fulfills these conditions, to analyze the potential of SBFSEM compared with ssTEM. Our data suggest that the resolution obtained by SBFSEM allows depicting structures on a cellular level and is sufficient to discriminate subcellular components, but is highly dependent on previous staining procedures and electron density of the target structures.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson-Cedergren, E. (1959). Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fibre as revealed by three-dimensional reconstructions from serial sections. J Ultra Res 2, 5191.CrossRefGoogle Scholar
Andres, B., Koethe, U., Kroeger, T., Helmstaedter, M., Briggman, K.L., Denk, W. & Hamprecht, F.A. (2012). 3D segmentation of SBFSEM images of a neuropil by a graphical model over supervoxel boundaries. Med Image Anal 16, 796805.Google Scholar
Andres, B., Köthe, U., Helmstaedter, M., Denk, W. & Hamprecht, F.A. (2008). Segmentation of SBFSEM volume data of neural tissue by hierarchical classification 5096, 142152.Google Scholar
Arellano, J.I., Benavides-Piccione, R., Defelipe, J. & Yuste, R. (2007). Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1(1), 131143.CrossRefGoogle ScholarPubMed
Armer, H.E., Mariggi, G., Png, K.M., Genoud, C., Monteith, A.G., Bushby, A.J., Gerhardt, H. & Collinson, L.M. (2009). Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy. PLoS One 4(11), e7716.Google Scholar
Briggman, K.L. & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16(5), 562570.Google Scholar
Briggman, K.L., Helmstaedter, M. & Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature 471(7337), 183188.Google Scholar
Bushby, A.J., P’Ng, K.M., Young, R.D., Pinali, C., Knupp, C. & Quantock, A.J. (2011). Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6(6), 845858.Google Scholar
Deerinck, T.J., Bushong, E.A., Thor, A. & Ellisman, M.H. (2010). NCMIR Methods for 3D EM. Available at http://ncmir.ucsd.edu/sbfsem-protocol.pdf (retrieved 18 April 2013).Google Scholar
Denk, W. & Horstmann, H. (2004). Serial block-face scannining electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11), e329.Google Scholar
Drobne, D., Milani, M., Leser, V., Tatti, F., Zrimec, A., Znidarsic, N., Kostanjsek, R. & Strus, J. (2008). Imaging of intracellular spherical lamellar structures and tissue gross morphology by a focused ion beam/scanning electron microscope (FIB/SEM). Ultramicroscopy 108(7), 663670.Google Scholar
Drobne, D., Milani, M., Zrimec, A., Zrimec, M.B., Tatti, F. & Drašlar, K. (2006). Focused ion beam/scanning electron microscopy studies of Porcellio scaber (Isopoda, Crustacea) digestive gland epithelium cells. Scanning 27(1), 3034.CrossRefGoogle Scholar
Fiala, J.C. & Harris, K.M. (2001). Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J Microsc 202(3), 468472.Google Scholar
Gay, H. & Anderson, T.F. (1954). Serial sections for electron microscopy. Science 120(3130), 10711073.Google Scholar
Giuly, R.J., Martone, M.E. & Ellisman, M.H. (2012). Method: Automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets. BMC Bioinformatics 13, 29.Google Scholar
Groot, D.M.D.D. (1988). Comparison of methods for the estimation of the thickness of ultrathin tissue sections. J Microsc 151(1), 2342.Google Scholar
Harris, K.M., Perry, E., Bourne, J., Feinberg, M., Ostroff, L. & Hurlburt, J. (2006). Uniform serial sectioning for transmission electron microscopy. JNeurosci 26(47), 1210112103.Google Scholar
Hayashi, T., Martone, M.E., Yu, Z., Thor, A., Doi, M., Holst, M.J., Ellisman, M.H. & Hoshijima, M. (2009). Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122(Pt 7), 10051013.Google Scholar
Hayat, M.A. (2000). Sectioning. In Principles and Techniques of Electron Microscopy: Biological Applications Hayat, M.A. (Ed.), pp. 139210. Cambridge: Cambridge University Press.Google Scholar
Helmstaedter, M., Briggman, K.L. & Denk, W. (2008). 3D structural imaging of the brain with photons and electrons. Curr Opin Neurobiol 18(6), 633641.Google Scholar
Helmstaedter, M., Briggman, K.L. & Denk, W. (2011). High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14(8), 10811088.CrossRefGoogle ScholarPubMed
Hoffpauir, B.K., Pope, B.A. & Spirou, G.A. (2007). Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: A case study of the calyx of Held. Nat Protoc 2(1), 922.Google Scholar
Horstmann, H., Korber, C., Satzler, K., Aydin, D. & Kuner, T. (2012). Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7(4), e35172.Google Scholar
Huei-Fang, Y. & Yoonsuck, C. (2009). Cell tracking and segmentation in electron microscopy images using graph cuts. In Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium, pp. 306309. Boston, MA: IEEE.Google Scholar
Jakab, R.L. & Hámori, J. (1988). Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol 179, 8188.Google Scholar
Jamieson, B. (1987). A biological classification of sperm types, with special reference to annelids and molluscs, and an example of spermiocladistics. In New Horizons in Sperm Cell Research, Mohri, H. (Ed.), pp. 311332. Tokyo, New York: Japan Scientific Society Press, Gordon and Breach Science Publishers.Google Scholar
Junglas, B., Briegel, A., Burghardt, T., Walther, P., Wirth, R., Huber, H. & Rachel, R. (2008). Ignicoccus hospitalis and Nanoarchaeum equitans: Ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells by electron dense cryotomography. Arch Microbiol 190, 395408.Google Scholar
Jurrus, E., Hardy, M., Tasdizen, T., Fletcher, P.T., Koshevoy, P., Chien, C.B., Denk, W. & Whitaker, R. (2009). Axon tracking in serial block-face scanning electron microscopy. Med Image Anal 13(1), 180188.Google Scholar
Knott, G., Marchman, H., Wall, D. & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12), 29592964.Google Scholar
Kubota, Y., Hatada, S.N. & Kawaguchi, Y. (2009). Important factors for the three-dimensional reconstruction of neuronal structures from serial ultrathin sections. Front Neural Circuits 3, 4.Google Scholar
Lang, S., Drouvelis, P., Tafaj, E., Bastian, P. & Sakmann, B. (2011). Fast extraction of neuron morphologies from large-scale SBFSEM image stacks. J Comput Neurosci 31(3), 533545.Google Scholar
Leser, V., Milani, M., Tatti, F., Tkalec, Z.P., Strus, J. & Drobne, D. (2010). Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research. Protoplasma 246(1–4), 4148.Google Scholar
Levinthal, C. & Ware, R. (1972). Three dimensional reconstruction from serial sections. Nature 236, 207210.Google Scholar
Lipke, E. & Michalik, P. (2012). Formation of primary sperm conjugates in a haplogyne spider (Caponiidae, Araneae) with remarks on the evolution of sperm conjugation in spiders. Arthropod Struct Dev 41(6), 561573.CrossRefGoogle Scholar
Macke, J.H., Maack, N., Gupta, R., Denk, W., Scholkopf, B. & Borst, A. (2008). Contour-propagation algorithms for semi-automated reconstruction of neural processes. J Neurosci Methods 167(2), 349357.Google Scholar
Medeiros, L.C.S., De Souza, W., Jiao, C.G., Barrabin, H. & Miranda, K. (2012). Visualizing the 3D architecture of multiple erythrocytes infected with plasmodium at nanoscale by focused ion beam-scanning electron microscopy. PLoS One 7(3), e33445.Google Scholar
Merchan-Perez, A., Rodriguez, J.R., Alonso-Nanclares, L., Schertel, A. & Defelipe, J. (2009). Counting synapses using FIB/SEM microscopy: A true revolution for ultrastructural volume reconstruction. Front Neuroanat 3, 18.Google Scholar
Meruvia-Pastor, O.E., Soh, J., Schmidt, E.J., Boughner, J.C., Xiao, M., Jamniczky, H.A., Hallgrimsson, B. & Sensen, C.W. (2011). Estimating cell count and distribution in labeled histological samples using incremental cell search. Int J Biomed Imaging 2011, 874702.Google Scholar
Meyer, E.P. & Domanico, V.J. (1988). Three-dimensional reconstruction: A tissue embedding method for alignment of serial sections. J Neurosci Methods 26, 129132.Google Scholar
Michalik, P. & Lipke, E. (2013). Male reproductive system of spiders. In Spider Ecophysiology, Nentwig, W. (Ed.), pp. 173187. Heidelberg: Springer.Google Scholar
Müller-Reichert, T., Manusco, J., Lich, B. & McDonald, K. (2010). Three-dimensional reconstruction methods for Caenorhabditis elegans ultrastructure. In Methods in Cell Biology, Müller-Reichert, T. (Ed.), pp. 331361. Academic Press: Elsevier.Google Scholar
Murphy, G.E., Narayan, K., Lowekamp, B.C., Hartnell, L.M., Heymann, J.A., Fu, J. & Subramaniam, S. (2011). Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J Struct Biol 176(3), 268278.Google Scholar
Mustafi, D., Avishai, A., Avishai, N., Engel, A., Heuer, A. & Palczewski, K. (2011). Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology. J Neurosci Methods 198(1), 7076.Google Scholar
Nierzwicki-Bauer, S.A., Balkwill, D.L. & Stevens, S.E. Jr. (1983). Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97(3), 713722.Google Scholar
Peachey, L.D. (1958). Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J Cell Biol 4(3), 233242.Google Scholar
Pellettieri, J., Fitzgerald, P., Watanabe, S., Mancuso, J., Green, D.R. & Sanchez Alvarado, A. (2010). Cell death and tissue remodeling in planarian regeneration. Dev Biol 338(1), 7685.Google Scholar
Pitnick, S., Hosken, D. & Birkhead, T.R. (2009). Sperm morphological diversity. In Sperm Biology—An Evolutionary Perspective Birkhead, T.R., Hosken, D. & Pitnick, S. (Eds.), pp. 69149. Amsterdam: Academic Press.Google Scholar
Rouquette, J., Genoud, C., Vazquez-Nin, G.H., Kraus, B., Cremer, T. & Fakan, S. (2009). Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: A novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 17, 801810.Google Scholar
Sjöstrand, F.S. (1958). Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultra Res 2(1), 122170.CrossRefGoogle ScholarPubMed
Soufan, A.T., Ruijter, J.M., Hoff, M.J.B.V.D. & Moorman, A.F.M. (2001). Quantitative 3D reconstructions as identification tool in heart development. Image Anal Stereol 20(3), 193198.Google Scholar
Soufan, A.T., van den Berg, G., Moerland, P.D., Massink, M.M., van den Hoff, M.J., Moorman, A.F. & Ruijter, J.M. (2007). Three-dimensional measurement and visualization of morphogenesis applied to cardiac embryology. J Microsc 225(Pt 3), 269274.Google Scholar
Spurr, A.R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultra Res 26, 3143.CrossRefGoogle ScholarPubMed
Stevens, J.K., Davis, T.L., Friedman, N. & Sterling, P. (1980). A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Res 2(3), 265293.Google Scholar
Toga, A.W. & Arnicar-Sulze, T.L. (1987). Digital image reconstruction for the study of brain structure and function. J Neurosci Methods 20, 721.Google Scholar
Wei, D., Jacobs, S., Modla, S., Zhang, S., Young, C.L., Cirino, R., Caplan, J. & Czymmek, K. (2012). High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. Biotechniques 53(1), 4148.CrossRefGoogle ScholarPubMed
Williams, M.A. & Meek, G.A. (1966). Studies on thickness variation in ultrathin sections for electron microscopy. J R Microsc Soc 85(3), 337352.Google Scholar
Supplementary material: Image

Lipke Supplementary Material

Figure 1

Download Lipke Supplementary Material(Image)
Image 33.2 MB
Supplementary material: File

Lipke Supplementary Material

Table 1

Download Lipke Supplementary Material(File)
File 13.7 KB
Supplementary material: File

Lipke Supplementary Material

Table 2

Download Lipke Supplementary Material(File)
File 15.7 KB