Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T08:50:05.689Z Has data issue: false hasContentIssue false

A Second Amorphous Layer Underneath Surface Oxide

Published online by Cambridge University Press:  23 February 2017

Bin Zhang
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
Kunlin Peng
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, China
Xuechao Sha
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
Ang Li*
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
Xiaoyuan Zhou
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, China
Yanhui Chen
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
QingSong Deng
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
Dingfeng Yang
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China College of Physics, Chongqing University, Chongqing 401331, China
Evan Ma*
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Xiaodong Han*
Affiliation:
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
Get access

Abstract

Formation of a nanometer-scale oxide surface layer is common when a material is exposed to oxygen-containing environment. Employing aberration-corrected analytical transmission electron microscopy and using single crystal SnSe as an example, we show that for an alloy, a second thin amorphous layer can appear underneath the outmost oxide layer. This inner amorphous layer is not oxide based, but instead originates from solid-state amorphization of the base alloy when its free energy rises to above that of the metastable amorphous state; which is a result of the composition shift due to the preferential depletion of the oxidizing species, in our case, the outgoing Sn reacting with the oxygen atmosphere.

Type
Materials Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L.J., D’Alfonso, A.J., Freitag, B. & Klenov, D.O. (2012). Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull 37, 4752.Google Scholar
Badrinarayanan, S., Mandale, A.B., Gunjikar, V.G. & Sinham, A.P.B. (1986). Mechanism of high-temperature oxidation of tin selenide. J Mater Sci 21, 33333338.CrossRefGoogle Scholar
Baumgardner, W.J., Choi, J.J., Lim, Y.F. & Hanrath, T. (2010). SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J Am Chem Soc 132, 95199521.CrossRefGoogle ScholarPubMed
Cabrera, N. & Mott, N. (1949). Theory of the oxidation of metals. Rep Prog Phys 12, 163184.Google Scholar
Chu, M.W. & Chen, C.H. (2013). Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy. ACS Nano 7, 47004707.CrossRefGoogle ScholarPubMed
Chung, K.M., Wamwangi, D., Woda, M., Wuttig, M. & Bensch, W. (2008). Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J Appl Phys 103, 083523.CrossRefGoogle Scholar
de Kergommeaux, A., Faure-Vincent, J., Pron, A., de Bettignies, R., Malaman, B. & Reiss, P. (2012). Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn–Mössbauer spectroscopy. J Am Chem Soc 134, 1165911666.Google Scholar
Franzman, M.A., Schlenker, C.W., Thompson, M.E. & Brutchey, R.L. (2010). Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J Am Chem Soc 132, 40604061.Google Scholar
Huh, M.Y., Kim, S.H., Ahn, J.P., Park, J.K. & Kim, B.K. (1999). Oxidation of nanophase tin particles. Nanostruct Mater 11, 211220.CrossRefGoogle Scholar
Jiang, Y., Wang, Y., Sagendorf, J., West, D., Kou, X., Wei, X., He, L., Wang, K.L., Zhang, S. & Zhang, Z. (2013). Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett 13, 28512856.Google Scholar
Johnson, W.L. (1986). Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog Mater Sci 30, 81134.Google Scholar
Johnson, W.L. (1988). Crystal-to-glass transformation in metallic materials. Mater Sci Eng 97, 113.Google Scholar
Lavut, E.G., Timofeyev, B.I., Yuldasheva, V.M., Lavut, E.A. & Galchenko, G.L. (1981). Enthalpies of formation of tin (IV) and tin (II) oxides from combustion calorimetry. J Chem Thermodyn 13, 635646.Google Scholar
Li, C.W., Hong, J., May, A.F., Bansal, D., Chi, S., Hong, T., Ehlers, G. & Delaire, O. (2015). Orbitally driven giant phonon anharmonicity in SnSe. Nat Phys 11, 10631069.CrossRefGoogle Scholar
Li, Y., He, B., Heremans, J.P. & Zhao, J.C. (2016). High-temperature oxidation behavior of thermoelectric SnSe. J Alloys Compd 669, 224231.CrossRefGoogle Scholar
Ma, E., Meng, W.J., Johnson, W.L., Nicolet, M.A. & Nathan, M. (1988). Simultaneous planar growth of amorphous and crystalline Ni silicides. Appl Phys Lett 53, 20332035.CrossRefGoogle Scholar
Mallika, C., Edwin Suresh Raj, A.M., Nagaraja, K.S. & Sreedharan, O.M. (2001). Use of SnO for the determination of standard Gibbs energy of formation of SnO2 by oxide electrolyte e.m.f. measurements. Thermochim Acta 371, 95101.Google Scholar
Olin, Å., Noläng, B., Öhman, L.O., Osadchii, E. & Rosén, E. (2005). Chemical Thermodynamics of Selenium. Amsterdam: Elsevier.Google Scholar
Over, H. & Seitsonen, A. (2002). Oxidation of metal surfaces. Science 297, 20032005.Google Scholar
Peng, K.L., Lu, X., Zhan, H., Hui, S., Tang, X., Wang, G., Dai, J., Uher, C., Wang, G. & Zhou, X.Y. (2016). Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci 9, 454460.Google Scholar
Pennycook, S.J. & Nellist, P.D. (2011). Scanning transmission electron microscopy: Imaging and analysis. New York: Springer Science & Business Media.Google Scholar
Sharma, R.C. & Chang, Y.A. (1986). The Se−Sn (selenium-tin) system. Bull Alloy Phase Diagr 7, 6872.Google Scholar
Vasil’ev, L., Makeeva, K., Kryl’nikov, Y.V. & Seregina, L. (1977). Study of oxidation and thermal decomposition of tin chalcogenides by nuclear gamma resonance spectroscopy. Izv Akad Nauk SSSR Neorg Mater 13, 17521756.Google Scholar
Wang, L.H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M.W. & Han, X.D. (2014). Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Comm 5, 4402.Google Scholar
Watanabe, M & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J Microsc 221, 89109.Google Scholar
Zhang, B., Peng, K.L., Li, A., Zhou, X.Y., Chen, Y.J., Deng, Q.S. & Han, X.D. (2016a). The chemistry and structural thermal stability of hole-doped single crystalline SnSe. J Alloys Compd 688, 10881094.Google Scholar
Zhang, B., Zhang, W., Shen, Z.J., Chen, Y.J., Li, J.X., Zhang, S.B., Zhang, Z., Wuttig, M., Mazzarello, R., Ma, E. & Han, X.D. (2016 b). Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl Phys Lett 108, 191902.Google Scholar
Zhao, L.D., Lo, S.H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P. & Kanatzidis, M.G. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373377.Google Scholar
Zhao, S., Wang, H., Zhou, Y., Liao, L., Jiang, Y., Yang, X., Chen, G., Lin, M., Wang, Y., Peng, H. & Liu, Z. (2015). Controlled synthesis of single-crystal SnSe nanoplates. Nano Res 8, 288295.CrossRefGoogle Scholar