Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T02:10:32.989Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Study of α,ω-Dihexylsexithiophene Adlayers on Au(111): A Chiral Separation Induced by a Surface

Published online by Cambridge University Press:  31 July 2012

Yonghai Song*
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Yu Wang
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Lingli Wan
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Shuhong Ye
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Haoqing Hou
Affiliation:
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Li Wang*
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
*
Corresponding author. E-mail: [email protected]
Corresponding author. E-mail: [email protected]
Get access

Abstract

The self-assembly of α,ω-dihexylsexithiophene molecules on an Au(111) surface was examined by using scanning tunneling microscopy at room temperature, revealing the internal molecular structures of the sexithiophene backbones and the hexyl side chains. The α,ω-dihexylsexithiophene formed a large and well-ordered monolayer in which the molecule lay flatly on the Au(111) surface and was separated into two chiral domains. A detailed observation reveals that the admolecules were packed in one lamellae with their molecular axis aligned along the main axis of the Au(111) substrate with their hexyl chains deviated from ⟨110⟩ direction of the Au(111) substrate by 12 ± 0.5°. In contrast to the behavior in the three-dimensional bulk structure, flat-lying adsorption introduced molecular chirality: right- and left-handed molecules separate into domains of two different orientations, which are mirror symmetric with respect to the ⟨121⟩ direction of the Au(111) substrate. Details of the adlayer structure and the chiral self-assembly were discussed here.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Mottaleb, M.M.S., Götz, G., Kilickiran, P., Bäuerle, P. & Mena-Osteritz, E. (2006). Influence of halogen substituents on the self-assembly of oligothiophenes—A combined STM and theoretical approach. Langmuir 22, 14431448.CrossRefGoogle ScholarPubMed
Allard, N., Beaupré, S., Réda Aïch, B., Najari, A., Tao, Y. & Leclerc, M. (2011). Synthesis and characterization of new poly(thieno[3,4-d]thiazole) derivatives for photovoltaic applications. Macromolecules 44(18), 71847187.CrossRefGoogle Scholar
Azumi, R., Götz, G. & Bäuerle, P. (1999). Self-assembly of alkylsubstituted oligothiphenes. Synth Met 101, 569572.CrossRefGoogle Scholar
Azumi, R., Gotz, G., Debaerdemaeker, T. & Bäuerle, P. (2000). Coincidence of the molecular organization of beta-substituted oligothiophenes in 2D-layers and 3D-crystals. Chem Eur J 6, 735744.3.0.CO;2-A>CrossRefGoogle Scholar
Barth, J.V., Costantini, G. & Kern, K. (2005). Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671679.CrossRefGoogle ScholarPubMed
Beaujuge, P.M. & Fréchet, J.M.J. (2011). Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133(50), 2000920029.CrossRefGoogle ScholarPubMed
Böhringer, M., Morgenstern, K., Schneider, W.-D., Berndt, R., Mauri, F., De Vita, A. & Car, R. (1999). Two-dimensional self-assembly of supramolecular clusters and chains. Phys Rev Lett 83, 324327.CrossRefGoogle Scholar
Böhringer, M., Schneider, W.D. & Berndt, R. (2000). Real space observation of a chiral phase transition in a two-dimensional organic layer. Angew Chem Int Ed 39, 792795.3.0.CO;2-2>CrossRefGoogle Scholar
Brun, M., Demadrille, R., Rannou, P., Pron, A., Travers, J.P. & Grevin, B. (2004). Multiscale scanning tunneling microscopy study of self-assembly phenomena in two-dimensional polycrystals of pi-conjugated polymers: The case of regioregular poly (dioctylbithiophene-alt-fluore-none). Adv Mater 16, 20872092.CrossRefGoogle Scholar
Chen, Q. & Richardson, N.V. (2003). Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nat Mater 2, 324328.CrossRefGoogle ScholarPubMed
De Feyter, S. & De Schryver, F.C. (2003). Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32, 139150.CrossRefGoogle ScholarPubMed
Didane, Y., Mehl, G.H., Kumagai, A., Yoshimoto, N., Videlot-Ackermann, C. & Brisset, H. (2008). A “kite” shaped styryl end-capped benzo[2,1-b:3,4-b′] dithiophene with high electrical performances in organic thin film transistors. J Am Chem Soc 130(52), 1768117683.CrossRefGoogle Scholar
Egelhaaf, H.J., Oelkrug, D., Gebauer, W., Sokolowski, M., Umbach, E., Fischer, T. & Bauerle, P. (1998). Photophysical properties of β-alkylated quater-, octa-, dodeca- and hexadecatiophenes. Opt Mater 9(1-4), 5964.CrossRefGoogle Scholar
Fasel, R., Parschau, M. & Ernst, K.H. (2006). Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449452.CrossRefGoogle ScholarPubMed
Fasel, R., Parschau, M. & Ernst, K.H. (2003). Chirality transfer from single molecules into self-assembled monolayers. Angew Chem Int Ed 42, 51785181.CrossRefGoogle ScholarPubMed
Fasel, R., Wider, J., Quitmann, C., Ernst, K.-H. & Greber, T. (2004). Determination of the absolute chirality of adsorbed molecules. Angew Chem Int Ed 43, 28532856.CrossRefGoogle ScholarPubMed
France, C.B. & Parkinson, B.A. (2003). Naphtho[2,3-a]pyrene forms chiral domains on Au(111). J Am Chem Soc 125, 1271212713.CrossRefGoogle Scholar
Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Santos, D.A.D., Brédas, J.L., Lögdlund, M. & Salaneck, W.R. (1999). Electroluminescence in conjugated polymers Nature 397, 121128.CrossRefGoogle Scholar
Gendron, D., Morin, P.O., Berrouard, P., Allard, N., Reda Aïch, B., Garon, C.N., Tao, Y. & Leclerc, M. (2011). Synthesis and photovoltaic properties of poly(dithieno[3,2-b:2′,3′-d]germole) derivatives. Macromolecules 44(18), 71887193.CrossRefGoogle Scholar
Glowatzki, H., Duhm, S., Braun, K.F., Rabe, J.P. & Koch, N. (2007). Molecular chains and carpets of sexithiophenes on Au(111). Phys Rev B 76, 125425(6). CrossRefGoogle Scholar
Hai, N.T.M., Van der Auweraer, M., Müllen, K. & De Feyter, S. (2009). Self-assembly of a functionalized alkylated isophthalic acid at the Au(111)/electrolyte interface: Structure and dynamics. J Phys Chem C 113, 1156711574.CrossRefGoogle Scholar
Huang, T., Hu, Z.P., Wang, B., Chen, L., Zhao, A.D., Wang, H.Q. & Hou, J.G. (2003). Observation of hierarchical chiral structures in 8-nitrospiropyran monolayers. J Phys Chem B 111, 69736977.CrossRefGoogle Scholar
Huang, T., Hu, Z.P., Zhao, A.D., Wang, H.Q., Wang, B., Yang, J.L. & Hou, J.G. (2007). Quasi chiral phase separation in a two-dimensional orientationally disordered system: 6-nitrospiropyran on Au(111). J Am Chem Soc 129, 38573862.CrossRefGoogle Scholar
Huisman, B.H., Valeton, J.J.P., Nijssen, W., Lub, J. & Hoeve, W.T. (2003). Oligothiophene-based networks applied for field-effect transistors. Adv Mater 15(23), 20022005.CrossRefGoogle Scholar
Kiel, M., Duncker, K., Hagendorf, C. & Widdra, W. (2007). Molecular structure and chiral separation in α-sexithiophene ultrathin films on Au(111): Low-energy electron diffraction and scanning tunneling microscopy. Phys Rev B 75, 195439(8). CrossRefGoogle Scholar
Kühnle, A., Linderoth, T.R., Hammer, B. & Besenbacher, F. (2002). Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy, Nature 415, 891893.CrossRefGoogle ScholarPubMed
Lapitan, L.D.S. Jr., Tongol, B.J.V. & Yau, S.L. (2010). Molecular assembly and electropolymerization of 3,4-ethylenedioxythiophene on Au(111) single crystal electrode as probed by in situ electrochemical STM in 0.10 M HClO4 . Langmuir 26, 1077110777.CrossRefGoogle ScholarPubMed
Li, Z.H., Wong, M.S., Fukutani, H. & Tao, Y. (2005). Full emission color tuning in bis-dipolar diphenylamino-endcapped oligoarylfluorenes. Chem Mater 17, 50325040.CrossRefGoogle Scholar
Lu, G., Li, L. & Yang, X. (2007). Achieving perpendicular alignment of rigid polythiophene backbones to the substrate by using solvent-vapor treatment. Adv Mater 19, 35943598.CrossRefGoogle Scholar
Mazzeo, M., Pisignano, D., Favaretto, L., Sotgiu, G., Barbarella, G., Cingolani, R. & Gigli, G. (2003). White emission from organic light emitting diodes based on energy down-convertion mechanisms. Synth Met 139(3), 675677.CrossRefGoogle Scholar
Meijer, E.W. & Schenning, A. (2002). Chemistry: Material marriage in electronics. Nature (London) 419, 353354.CrossRefGoogle Scholar
Mena-Osteritz, E. (2002). Superstructures of self-organizing thiophenes. Adv Mater 14, 609616.3.0.CO;2-7>CrossRefGoogle Scholar
Mena-Osteritz, E., Meyer, A., Langeveld-Voss, B.M.W., Janssen, R.A.J., Meijer, E.W. & Bäuerle, P. (2000). Two-dimensional crystals of poly(3-alkyl-thiophene)s: Direct visualization of polymer folds in submolecular resolution. Angew Chem Int Ed 39, 26792684.3.0.CO;2-2>CrossRefGoogle Scholar
Murphy, A.R., Fréchet, J.M.J., Chang, P., Lee, J. & Subramanian, V. (2004). Organic thin film transistors from a soluble oligothiophene derivative containing thermally removable solubilizing groups. J Am Chem Soc 126(6), 15961597.CrossRefGoogle ScholarPubMed
Ortega Lorenzo, M., Baddeley, C.J., Muryn, C. & Raval, R. (2000). Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376379.CrossRefGoogle Scholar
Parschau, M., Kampen, T. & Ernst, K.H. (2005). Homochirality in monolayers of achiral meso tartaric acid. Chem Phys Lett 407, 433437.CrossRefGoogle Scholar
Percec, V., Glodde, M., Bera, T.K., Miura, Y., Shiyanovskaya, I., Singer, K.D., Balagurusamy, V.S.K., Heiney, P.A., Schnell, I., Rapp, A., Spiess, H.W., Hudson, S.D. & Duan, H. (2002). Programmed supramolecular helical nanocylinders self-organize ultrahigh density arrays of fast optoelectronic elements. Nature (London) 419, 384387.CrossRefGoogle Scholar
Pérez-García, L. & Amabilino, D.B. (2007). Macro- and supra-molecular polymers and assemblies. Chem Soc Rev 36, 941967.CrossRefGoogle ScholarPubMed
Rochefort, A., Bedwani, S. & Lopez-Bezanilla, A. (2011). Evidence for π-interactions in stacked polymers by STM simulations. J Phys Chem C 115, 1862518633.CrossRefGoogle Scholar
Romer, S., Behzadi, B., Fasel, R. & Ernst, K.H. (2005). Homochiral conglomerates and racemic crystals in two dimensions: Tartaric acid on Cu(110). Chem Eur J 11, 41494154.CrossRefGoogle ScholarPubMed
Rossi, L., Lanzani, G. & Garnier, F. (1998). Charged photoexcitations in thiophene-based molecular semiconductors. Phys Rev B 58, 66846687.CrossRefGoogle Scholar
Sakaguchi, H., Matsumura, H., Gong, H. & Abouelwafa, A.M. (2005). Direct visualization of the formation of single-molecule conjugated copolymers. Science 310, 10021006.CrossRefGoogle ScholarPubMed
Schiffrin, A., Riemann, A., Auwärter, W., Pennec, Y., Weber-Bargioni, A., Cvetko, D., Cossaro, A., Morgante, A. & Barth, J.V. (2007). Zwitterionic self-assembly of L-methionine nanogratings on the Ag(111) surface. Proc Natl Acad Sci USA 104, 52795284.CrossRefGoogle ScholarPubMed
Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P. & de Leeuw, D.M. (1999). Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685688.CrossRefGoogle Scholar
Stepanow, S., Lin, N., Vidal, F., Landa, A., Ruben, M., Barth, J.V. & Kern, K. (2005). Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. Nano Lett 5, 901904.CrossRefGoogle ScholarPubMed
Tao, F. & Bernasek, S.L. (2005). Chirality in supramolecular self-assembled monolayers of achiral molecules on graphite: Formation of enantiomorphous domains from arachidic anhydride. J Phys Chem B 109, 62336238.CrossRefGoogle ScholarPubMed
Tongol, B.J.V., Wang, L., Yau, S.L., Otsubo, T. & Itaya, K. (2009). Nanostructures and molecular assembly of β-blocked long oligothiophenes up to the 96-mer on Au(111) as probed by in situ electrochemical scanning tunneling microscopy. J Phys Chem C 113, 1381913824.CrossRefGoogle Scholar
Tongol, B.J.V., Wang, L., Yau, S.L., Otsubo, T. & Itaya, K. (2010). Substrate-induced varied conformation and molecular assemblies: In situ STM observation of β-substituted oligothiophene adlayers on Au(111). Langmuir 26, 71487152.Google Scholar
Vidal, F., Delvigne, E., Stepanow, S., Lin, N., Barth, J.V. & Kern, K. (2005). Chiral phase transition in two-dimensional supramolecular assemblies of prochiral molecules. J Am Chem Soc 127, 1010110106.CrossRefGoogle ScholarPubMed
Videlot-Ackermann, C., Ackermann, J., Brisset, H., Kawamura, K., Yoshimoto, N., Raynal, P., El Kassmi, A. & Fages, F. (2005). α,ω-Distyryl oligothiophenes: High mobility semiconductors for environmentally stable organic thin film transistors. J Am Chem Soc 127, 1634616347.CrossRefGoogle ScholarPubMed
Videlot-Ackermann, C., Brisset, H., Zhang, J., Ackermann, J., Nénon, S., Fages, F., Marsal, P., Tanisawa, T. & Yoshimoto, N. (2009). Influence of phenyl perfluorination on charge transport properties of distyryl-oligothiophenes in organic field-effect transistors. J Phys Chem C 113(4), 15671574.CrossRefGoogle Scholar
Wang, D., Xu, Q.M., Wan, L.J., Bai, C.L. & Jin, G. (2003). Adsorption of enantiomeric and racemic tyrosine on Cu(111): A scanning tunneling microscopy study. Langmuir 19, 19581962.CrossRefGoogle Scholar
Wang, L., Tongol, B.J.V., Yau, S.-L., Otsubo, T. & Itaya, K. (2010). Substrate-induced varied conformation and molecular assemblies: In situ STM observation of β-substituted oligothiophene adlayers on Au(111). Langmuir 26, 71487152.CrossRefGoogle ScholarPubMed
Weckesser, J., De Vita, A., Barth, J.V., Cai, C. & Kern, K. (2001). Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Phys Rev Lett 87, 096101. CrossRefGoogle ScholarPubMed
Wei, Y. & Reutt-Robey, J.E. (2011). Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template. J Am Chem Soc 133, 1523215235.CrossRefGoogle ScholarPubMed
Xu, B., Tao, C., Williams, E.D. & Reutt-Robey, J.E. (2006). Coverage dependent supramolecular structures: C60: ACA monolayers on Ag(111). J Am Chem Soc 128, 84938499.CrossRefGoogle ScholarPubMed
Yang, Z.Y. & Durkan, C. (2010). Edge and terrace structure of CoTPP on Au(111) investigated by ultra-high vacuum scanning tunnelling microscopy at room temperature. Surf Sci 604, 660665.CrossRefGoogle Scholar
Yang, Z.Y., Zhang, H.M., Yan, C.J., Li, S.S., Yan, H.J., Song, W.G. & Wan, L.J. (2007). Scanning tunneling microscopy of the formation, transformation, and property of oligothiophene self-organizations on graphite and gold surfaces. Proc Natl Acad Sci USA 104, 37073712.CrossRefGoogle ScholarPubMed
Zhang, S., Guo, Y., Wang, L., Li, Q., Zheng, K., Zhan, X., Liu, Y., Liu, R. & Wan, L. (2009). Synthesis, self-assembly and solution-processed field-effect transistors of a liquid crystalline bis(dithienothiophene) derivative. J Phys Chem C 113, 1623216237.CrossRefGoogle Scholar