Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T23:52:34.388Z Has data issue: false hasContentIssue false

Scanning Electron Microscopy and Synchrotron Radiation X-Ray Tomographic Microscopy of 330 Million Year Old Charcoalified Seed Fern Fertile Organs

Published online by Cambridge University Press:  16 March 2009

Andrew C. Scott*
Affiliation:
Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
Jean Galtier
Affiliation:
CIRAD AMAP TA 40/PS2, Bl. de la Lironde, F-34398 Montpellier cedex 5, France
Neil J. Gostling
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK Department of Biological Sciences, SUNY, Oswego, NY 13126, USA
Selena Y. Smith
Affiliation:
Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
Margaret E. Collinson
Affiliation:
Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
Marco Stampanoni
Affiliation:
Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
Federica Marone
Affiliation:
Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
Philip C.J. Donoghue
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
Stefan Bengtson
Affiliation:
Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Abundant charcoalified seed fern (pteridosperm) pollen organs and ovules have been recovered from Late Viséan (Mississippian 330 Ma) limestones from Kingswood, Fife, Scotland. To overcome limitations of data collection from these tiny, sometimes unique, fossils, we have combined low vacuum scanning electron microscopy on uncoated specimens with backscatter detector and synchrotron radiation X-ray tomographic microscopy utilizing the Materials Science and TOMCAT beamlines at the Swiss Light Source of the Paul Scherrer Institut. In combination these techniques improve upon traditional cellulose acetate peel sectioning because they enable study of external morphology and internal anatomy in multiple planes of section on a single specimen that is retained intact. The pollen organ Melissiotheca shows a basal parenchymatous cushion bearing more than 100 sporangia on the distal face. Digital sections show the occurrence of pollen in some sporangia. The described ovule is new and has eight integumentary lobes that are covered in spirally arranged glandular hairs. Virtual longitudinal sections reveal the lobes are free above the pollen chamber. Results are applied in taxonomy and will subsequently contribute to our understanding of the former diversity and evolution of ovules, seeds, and pollen organs in the seed ferns, the first seed-bearing plants to conquer the land.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Museum of Paleontology, University of Michigan, 1109 Geddes Road, Ann Arbor, MI 48109-1079, USA

References

REFERENCES

Barnard, P.D.W. & Long, A.G. (1973). On the structure of a petrified stem and some associated seeds from the Lower Carboniferous rocks of East Lothian, Scotland. Trans Royal Soc Edin 69, 91108.CrossRefGoogle Scholar
Bateman, R.B. & Rothwell, G.R. (1990). A re-appraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. I. Floristics and the development of whole plant concepts. Trans Royal Soc Edin: Earth Sci 81, 127159.Google Scholar
Bird, M.I., Ascough, P.L, Young, I.M., Wood, C.V. & Scott, A.C. (2008). X-ray microtomographic imaging of charcoal. J Archaeol Sci 35, 26982706 (doi:10.1016/j.jas.2008.04.018).Google Scholar
Donoghue, P.C.J., Bengtson, S., Dong, X-P., Gostling, N.J., Huldtgren, T., Cunningham, J.A., Yin, C., Yue, Z., Peng, F. & Stampanoni, M. (2006). Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442, 680683 (doi:10.1038/nature04890).Google Scholar
Friis, E.M., Crane, P.R., Pedersen, K.P., Bengtson, S., Donoghue, P.C.J., Grimm, G.W. & Stampanoni, M. (2007). Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450, 549552.Google Scholar
Galtier, J. & Rowe, N. (1991). A new permineralized seed-like structure from the basalmost Carboniferous of France. N Jb Geol Paläont Abh 183, 103120.Google Scholar
Glasspool, I.J., Edwards, D. & Axe, L. (2004). Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381383.Google Scholar
Glasspool, I.J., Edwards, D. & Axe, L. (2006). Charcoal in the Early Devonian: A wildfire-derived Konservat-Lagerstatte. Rev Palaeobot Palynol 142, 131136.Google Scholar
Gordon, W.T. (1941). On Salpingostoma dasu: A new Carboniferous seed from East Lothian. Trans Royal Soc Edin 60, 427464.Google Scholar
Hilton, J. & Bateman, R.B. (2006). Pteridosperms are the backbone of seed-plant phylogeny. J Torrey Bot Soc 133, 119168.CrossRefGoogle Scholar
Joy, K.W., Willis, A.J. & Lacey, W.S. (1956). A rapid cellulose peel technique in paleobotany. Ann Bot 20, 635637.CrossRefGoogle Scholar
Long, A.G. (1960). On the structure of Calymmatotheca kidstoni (emended) and Genomostoma latens gen et sp. nov.: A pteridosperm seed and cupule from the Calciferous Sandstone Series of Berwickshire. Trans Royal Soc Edin 64, 2948.Google Scholar
Long, A.G. (1961). Some pteridosperm seeds from the Calciferous Sandstone Series of Berwickshire. Trans Royal Soc Edin 64, 401419.Google Scholar
Long, A.G. (1966). Some Lower Carboniferous fructifications from Berwickshire, together with a theoretical account of the evolution of ovules, cupules, and carpels. Trans Royal Soc Edin 66, 345375.Google Scholar
Long, A.G. (1975). Further observations of some Lower Carboniferous seeds and cupules. Trans Royal Soc Edin 69, 278293.Google Scholar
Long, A.G. (1977). Some Lower Carboniferous pteridosperm cupules bearing ovules and microsporangia. Trans Royal Soc Edin 70, 111.Google Scholar
Lupia, R. (1995). Paleobotanical data from fossil charcoal—An actualistic study of plant reproductive structures. Palaios 10, 465477.Google Scholar
Meyer-Berthaud, B. (1986). Melissiotheca: A new pteridosperm pollen organ from the Lower Carboniferous of Scotland. Bot J Linn Soc 93, 277290.Google Scholar
Meyer-Berthaud, B. & Galtier, J. (1986). Studies on a Lower Carboniferous flora from Kingswood near Pettycur, Scotland. II. Phacelotheca, a new synangiate fructification of pteridospermous affinities. Rev Palaeobot Palynol 48, 181198.Google Scholar
Millay, M.A. & Taylor, T.N. (1979). Paleozoic seed fern pollen organs. Bot Rev 45, 301375.CrossRefGoogle Scholar
Niklas, K.J., Tiffney, B.H. & Knoll, A.H. (1980). Apparent changes in the diversity of fossil plants: A preliminary assessment. Evol Biol 12, 189.Google Scholar
Niklas, K.J., Tiffney, B.H. & Knoll, A.H. (1983). Patterns in vascular land plant diversification. Nature 303, 614616.Google Scholar
Schönenberger, J. (2005). Rise from the ashes—The reconstruction of charcoal fossil flowers. Trends Plant Sci 10, 436443.CrossRefGoogle ScholarPubMed
Scott, A.C. (1990a). Anatomical preservation of fossil plants. In Palaeobiology, A Synthesis, Briggs, D.E.G. & Crowther, P. (Eds.), pp. 263266. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Scott, A.C. (1990b). Preservation, evolution and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. In Volcanism and Fossil Biotas. Geological Society of America Special Publication, Lockley, M. & Rice, A. (Eds.), vol. 244, pp. 2538.CrossRefGoogle Scholar
Scott, A.C. (2000). The pre-Quaternary history of fire. Palaeogeog Palaeoclimatol Palaeoecol 164, 281329.Google Scholar
Scott, A.C. (2001). Preservation by fire. In Palaeobiology—A Synthesis II, Briggs, D.E.G. & Crowther, P. (Eds.), pp. 277280. Oxford, UK: Blackwell.Google Scholar
Scott, A.C. & Collinson, M.E. (2003). Non-destructive multiple approaches to interpret the preservation of plant fossils: Implications for calcium-rich permineralisations. J Geol Soc Lond 160, 857862.Google Scholar
Scott, A.C., Galtier, J. & Clayton, G. (1984). Distribution of Lower Carboniferous anatomically preserved floras in Western Europe. Trans Royal Soc Edin: Earth Sci 75, 311340.Google Scholar
Scott, A.C., Galtier, J. & Clayton, G. (1985). A new late Tournaisian (Lower Carboniferous) flora from the Kilpatrick Hills, Scotland. Rev Palaeobot Palynol 44, 8199.Google Scholar
Scott, A.C. & Glasspool, I.J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci USA 103, 1086110865.Google Scholar
Scott, A.C., Meyer-Berthaud, B., Galtier, J., Rex, G.M., Brindley, S.A. & Clayton, G. (1986). Studies on a Lower Carboniferous flora from Kingswood near Pettycur, Scotland. I. Preliminary report. Rev Palaeobot Palynol 48, 161180.CrossRefGoogle Scholar
Serbet, R., Taylor, T.N. & Taylor, E.L. (2006). On a new medullosan pollen organ from the Pennsylvanian of North America. Rev Palaeobot Palynol 142, 219227.CrossRefGoogle Scholar
Stampanoni, M., Borchert, G.L., Wyss, P., Abela, R., Patterson, B.D., Hunt, S., Vermeulen, D. & Rüegsegger, P. (2002). High resolution X-ray detector for synchrotron-based microtomography. Nucl Instrum Meth Phys Res A 491, 291301.Google Scholar
Stampanoni, M., Groso, A., Isenegger, A., Mikuljan, G., Chen, Q., Bertrand, A., Henein, S., Betemps, R., Frommherz, U., Böhler, P., Meister, D., Lange, M. & Abela, R. (2006). Trends in synchrotron-based tomographic imaging: The SLS experience. In Developments in X-Ray Tomography V, Bonse, Ulrich (Ed.), Proc. SPIE 6318, 63180M, 16057422 (doi: 10.1117/12.679497).Google Scholar
Sutton, M.D. (2008). Tomographic techniques for the study of exceptionally preserved fossils. Proc Roy Soc B 275, 15871593 (doi: 10.1098/rspb.2008.0263).Google Scholar
Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J.-J., Kay, R.F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P. & Zabler, S. (2006). Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83, 195202.Google Scholar
Taylor, T.N. (1988). Pollen and pollen organs of fossil gymnosperms: Phylogeny and reproductive biology. In Origin and Evolution of Gymnosperms, Beck, C.B. (Ed.), pp. 177217. New York: Columbia University Press.Google Scholar
Taylor, T.N. & Taylor, E.L. (1993). The Biology and Evolution of Fossil Plants. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Von Balthazar, M., Pedersen, K.R., Crane, P.R., Stampanoni, M. & Friis, E.M. (2007). Potomacanthus lobatus gen. et sp nov., a new flower of probable Lauraceae from the Early Cretaceous (Early to Middle Albian) of eastern North America. Am J Bot 94, 20412053.CrossRefGoogle Scholar
Weitkamp, T., Raven, C. & Snigirev, A. (1999). An imaging and microtomography facility at the ESRF beamline ID 22. In Developments in X-Ray Tomography II, Bonse, U. (Ed.), Proc. SPIE 3772, 311.Google Scholar

Scott movie

Scott movie

Download Scott movie(Video)
Video 6.1 MB