Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T01:35:02.176Z Has data issue: false hasContentIssue false

Resolving the Morphology of Niobium Carbonitride Nano-Precipitates in Steel Using Atom Probe Tomography

Published online by Cambridge University Press:  29 July 2014

Andrew J. Breen
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Kelvin Y. Xie
Affiliation:
School of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218-2682, USA
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Parks Road, OX13PH, Oxford, UK
Baptiste Gault
Affiliation:
Department of Materials, University of Oxford, Parks Road, OX13PH, Oxford, UK
Hung-Wei Yen
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Christopher C. Wong
Affiliation:
Department of Psychology, The University of Sydney, NSW 2006, Australia
Julie M. Cairney*
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Simon P. Ringer
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
*
*Corresponding author. [email protected]
Get access

Abstract

Atom probe is a powerful technique for studying the composition of nano-precipitates, but their morphology within the reconstructed data is distorted due to the so-called local magnification effect. A new technique has been developed to mitigate this limitation by characterizing the distribution of the surrounding matrix atoms, rather than those contained within the nano-precipitates themselves. A comprehensive chemical analysis enables further information on size and chemistry to be obtained. The method enables new insight into the morphology and chemistry of niobium carbonitride nano-precipitates within ferrite for a series of Nb-microalloyed ultra-thin cast strip steels. The results are supported by complementary high-resolution transmission electron microscopy.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araullo-Peters, V., Gault, B., Geuser, F.d., Deschamps, A. & Cairney, J.M. (2014). Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Materialia 66, 199208.Google Scholar
Araullo-Peters, V.J., Gault, B., Shrestha, S.L., Yao, L., Moody, M.P., Ringer, S.P. & Cairney, J.M. (2012). Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scripta Materialia 66(11), 907910.Google Scholar
Billinge, S.J.L. & Levin, I. (2007). The problem with determining atomic structure at the nanoscale. Science 316(5824), 561565.Google Scholar
Ceguerra, A.V., Moody, M.P., Stephenson, L.T., Marceau, R.K.W. & Ringer, S.P. (2010). A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data. Philosophical Magazine 90(12), 16571683.Google Scholar
Courtois, E., Epicier, T. & Scott, C. (2006). EELS study of niobium carbo-nitride nano-precipitates in ferrite. Micron 37(5), 492502.Google Scholar
Danoix, F., Epicier, T., Vurpillot, F. & Blavette, D. (2012). Atomic-scale imaging and analysis of single layer GP zones in a model steel. Journal of Materials Science 47(3), 15671571.Google Scholar
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B. & Blavette, D. (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surface and Interface Analysis 39(2–3), 268272.Google Scholar
DeArdo, A.J. (2001). Fundamental Metallurgy of Niobium in Steel. Niobium Science and Technology: Proceedings of the Niobium 2001 International Symposium, TMS, 427500.Google Scholar
Deschamps, A., Danoix, F., De Geuser, F., Epicier, T., Leitner, H. & Perez, M. (2011). Low temperature precipitation kinetics of niobium nitride platelets in Fe. Materials Letters 65(14), 22652268.Google Scholar
Fujita, N., Bhadeshia, H.K.D.H. & Kikuchi, M. (2004). Precipitation sequence in niobium-alloyed ferritic stainless steel. Modelling and Simulation in Materials Science and Engineering 12(2), 273.Google Scholar
Gault, B., Danoix, F., Hoummada, K., Mangelinck, D. & Leitner, H. (2012a). Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182191.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012b). Atom probe crystallography. Materials Today 15(9), 378386.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012c). Atom Probe Microscopy. New York: Springer.Google Scholar
Gault, B., Moody, M.P., de Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. Journal of Applied Physics 105(3), 448457.CrossRefGoogle Scholar
Guinier, A. (1938). Structure of age-hardened aluminium-copper alloys. Nature 142, 569570.Google Scholar
Hansen, S.S., Vandersande, J.B. & Cohen, M. (1980). Niobium carbonitride precipitation and austenite recrystallization in hot-rolled microalloyed steels. Metallurgical Transactions A – Physical Metallurgy and Materials Science 11(3), 387402.Google Scholar
Hellman, O.C., du Rivage, J.B. & Seidman, D.N. (2003). Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95(1–4), 199205.Google Scholar
Hin, C., Brechet, Y., Maugis, P. & Soisson, F. (2008). Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron. Acta Materialia 56(19), 55355543.Google Scholar
Hono, K., Hashizume, T., Hasegawa, Y., Hirano, K. & Sakurai, T. (1986). A study of multilayer Gp zones in an Al-1.7at-percent cu alloy by atom-probe fim. Scripta Metallurgica 20(4), 487492.Google Scholar
Hua, M., Garcia, C.I. & DeArdo, A.J. (1997). Precipitation behavior in ultra-low-carbon steels containing titanium and niobium. Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science 28(9), 17691780.Google Scholar
Hutchinson, C.R., Zurob, H.S., Sinclair, C.W. & Brechet, Y.J.M. (2008). The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scripta Materialia 59(6), 635637.Google Scholar
Kelly, T.F., Miller, M.K., Rajan, K. & Ringer, S.P. (2013). Atomic-scale tomography: A 2020 Vision. Microscopy and Microanalysis 19(3), 652664.Google Scholar
Maruyama, N., Uemori, R. & Sugiyama, M. (1998). The role of niobium in the retardation of the early stage of austenite recovery in hot-deformed steels. Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing 250(1), 27.Google Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surface Science 246(1–3), 442449.Google Scholar
Miller, M.K., Kelly, T.F., Rajan, K. & Ringer, S.P. (2012). The future of atom probe tomography. Materials Today 15(4), 158165.Google Scholar
Miller, M.K. & Kenik, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microscopy and Microanalysis 10(3), 336341.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109(7), 815824.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C., Ceguerra, A.V., Breen, A.J. & Ringer, S.P. (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Microscopy and Microanalysis 17(2), 226239.Google Scholar
Mottura, A., Warnken, N., Miller, M.K., Finnis, M.W. & Reed, R.C. (2010). Atom probe tomography analysis of the distribution of rhenium in nickel alloys. Acta Materialia 58(3), 931942.Google Scholar
Perez, M., Courtois, E., Acevedo, D., Epicier, T. & Maugis, P. (2007). Precipitation of niobium carbonitrides in ferrite: Chemical composition measurements and thermodynamic modelling. Philosophical Magazine Letters 87(9), 645656.Google Scholar
Preston, G.D. (1938). The diffraction of X-rays by an age-hardening alloy of aluminium and copper. The structure of an intermediate phase. Philosophical Magazine 26(178), 855871.Google Scholar
Sha, W., Chang, L., Smith, G.D.W., Liu, C. & Mittemeijer, E.J. (1992). Some aspects of atom-probe analysis of Fe-C and Fe-N Systems. Surface Science 266(1–3), 416423.Google Scholar
Shanmugam, S., Misra, R.D.K., Hartmann, J. & Jansto, S.G. (2006). Microstructure of high strength niobium-containing pipeline steel. Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing 441(1–2), 215229.Google Scholar
Shrestha, S.L., Xie, K.Y., Zhu, C., Ringer, S.P., Killmore, C., Carpenter, K., Kaul, H., Williams, J.G. & Cairney, J.M. (2013). Cluster strengthening of Nb-microalloyed ultra-thin cast strip steels produced by the CASTRIP® process. Materials Science and Engineering: A 568, 8895.Google Scholar
Sosinsky, D.J., Campbell, P., Mahapatra, R., Blejde, W. & Fisher, F. (2008). The CASTRIP(A (R)) process – recent developments at Nucor steel’s commercial strip casting plant. Metallurgist 52(11–12), 691699.Google Scholar
Stephenson, L.T., Moody, M.P., Gault, B. & Ringer, S.P. (2011). Estimating the physical cluster-size distribution within materials using atom-probe. Microscopy Research and Technique 74(9), 799803.Google Scholar
Stephenson, L.T., Moody, M.P., Liddicoat, P.V. & Ringer, S.P. (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microscopy and Microanalysis 13(6), 448463.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Applied Physics Letters 76(21), 31273129.Google Scholar
Xie, K.Y., Yao, L., Zhu, C., Cairney, J.M., Killmore, C.R., Barbaro, F.J., Williams, J.G. & Ringer, S.P. (2011). Effect of Nb microalloying and hot rolling on microstructure and properties of ultrathin cast strip steels produced by the CASTRIP(A (R)) process. Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science 42A(8), 21992206.Google Scholar
Xie, K.Y., Zheng, T.X., Cairney, J.M., Kaul, H., Williams, J.G., Barbaro, F.J., Killmore, C.R. & Ringer, S.P. (2012). Strengthening from Nb-rich clusters in a Nb-microalloyed steel. Scripta Materialia 66(9), 710713.Google Scholar
Yao, L., Cairney, J.M., Zhu, C. & Ringer, S.P. (2011). Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy 111(6), 648651.Google Scholar
Yao, L., Gault, B., Cairney, J.M. & Ringer, S.P. (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philosophical Magazine Letters 90(2), 121129.Google Scholar