Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T00:07:04.989Z Has data issue: false hasContentIssue false

Reliability of Hoechst 33342 Staining under Wide-Field Microscopy for Evaluation of the Nuclear Status of Living Dog Oocytes

Published online by Cambridge University Press:  12 April 2012

Martine Chebrout
Affiliation:
INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France ENVA, UMR 1198 Biologie du Développement et Reproduction, 7 Avenue du Général de Gaulle, F-94700 Maisons-Alfort, France
Pierre-Gaël Adenot
Affiliation:
INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
Karine Reynaud
Affiliation:
INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France ENVA, UMR 1198 Biologie du Développement et Reproduction, 7 Avenue du Général de Gaulle, F-94700 Maisons-Alfort, France
Sylvie Chastant-Maillard*
Affiliation:
INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France ENVA, UMR 1198 Biologie du Développement et Reproduction, 7 Avenue du Général de Gaulle, F-94700 Maisons-Alfort, France ENVA, Reproduction, 7 Avenue du Général de Gaulle, F-94700 Maisons-Alfort, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Due to the marked cytoplasmic opacity of canine oocytes, the diagnosis of their nuclear status is difficult. The objective of the present study was to evaluate the accuracy of Hoechst staining observed under epifluorescence wide-field microscopy [living oocyte observation (LivOO)] by comparison to a reference technique [DNA staining with ethidium homodimer-2 under confocal microscopy; fixed oocyte observation (FixOO)]. Four Hoechst 33342 concentrations (200 ng, 500 ng, 1 μg, 2 μg/mL) were tested and 1 μg/mL was the lowest one with the lowest proportion of oocytes in which DNA was missed. At this concentration, LivOO procedure did not affect the degeneration rate. On 379 oocytes observed individually with the two techniques successively, diagnosis of meiosis resumption by LivOO was exact in 87.3% of the cases, but the meiosis resumption rate was underestimated (23.5% versus 34.3% with FixOO; p < 0.001). Diagnosis for metaphase II was exact in 80% of the cases, but LivOO detected only 72.7% of the metaphase II oocytes present. Metaphase rates did not differ between LivOO and FixOO. This study contributes to a better interpretation of in vitro maturation results. The developmental potential of metaphase II canine oocytes sorted after Hoechst staining is to be evaluated.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adenot, P.G., Corteggiani, E., Geze, M., Besombes, D. & Debey, P. (1992). The DNA content of mouse two-cell embryos can be measured by microfluorimetric image analysis under conditions of cell viability. J Fluoresc 2, 181206.CrossRefGoogle ScholarPubMed
Adenot, P.G., Szöllösi, M.S., Geze, M., Renard, J.P. & Debey, P. (1991). Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization. Mol Reprod Dev 28, 2334.Google Scholar
Alhaider, A.K. & Watson, P.F. (2009). The effects of hCG and growth factors on in vitro nuclear maturation of dog oocytes obtained during anoestrus. Reprod Fert Dev 21, 538548.CrossRefGoogle ScholarPubMed
Arndt-Jovin, D.J. & Jovin, T.M. (1977). Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem 25, 585589.CrossRefGoogle ScholarPubMed
Bogliolo, L., Zedda, M.T., Ledda, S., Leoni, G., Naitana, S. & Pau, S. (2002). Influence of co-culture with oviductal epithelial cells on in vitro maturation of canine oocytes. Reprod Nutr Dev 42, 265273.CrossRefGoogle ScholarPubMed
Chastant-Maillard, S., Chebrout, M., Thoumire, S., Saint-Dizier, M., Chodkiewicz, M. & Reynaud, K. (2010). Embryo biotechnology in the dog: A review. Reprod Fert Dev 22, 10491056.CrossRefGoogle ScholarPubMed
Chastant-Maillard, S., Viaris De Lesegno, C., Chebrout, M., Thoumire, S., Meylheuc, T., Fontbonne, A., Chodkiewicz, M., Saint-Dizier, M. & Reynaud, K. (2011). The canine oocyte: Uncommon features of in vivo and in vitro maturation. Reprod Fert Dev 23, 391402.Google Scholar
Chebrout, M., De Lesegno, C.V., Reynaud, K., Chat, S. & Chastant-Maillard, S. (2009). Nuclear and cytoplasmic maturation of canine oocytes related to in vitro denudation. Reprod Dom Anim 44(Suppl 2), 243246.Google Scholar
Critser, E.S. & First, N.L. (1986). Use of a fluorescent stain for visualization of nuclear material in living oocytes and early embryos. Stain Technol 61(1), 15.CrossRefGoogle ScholarPubMed
Cui, X.S., Jin, Y.X., Shen, X.H., Lee, J.Y., Lee, H.S., Yin, X.J., Kong, I.K. & Kim, N.H. (2006). Epidermal growth factor enhances meiotic resumption of canine oocytes in the presence of BSA. Theriogenology 66, 267274.CrossRefGoogle ScholarPubMed
Debey, P., Renard, J.P., Coppey-Moisan, M., Monnot, I. & Geze, M. (1989). Dynamics of chromatin changes in live one-cell mouse embryos: A continuous follow-up by fluorescence microscopy. Exp Cell Res 183(2), 413433.Google Scholar
Debey, P., Szöllösi, M.S., Szöllösi, D., Vautier, D., Girousse, A. & Besombes, D. (1993). Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev 36(1), 5974.Google Scholar
De Lesegno, C.V., Reynaud, K., Pechoux, C., Thoumire, S. & Chastant-Maillard, S. (2008). Ultrastructure of canine oocytes during in vivo maturation. Mol Reprod Dev 75(1), 115125.CrossRefGoogle ScholarPubMed
Durand, R.E. & Olive, P.L. (1982). Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. J Histochem Cytochem 30, 111116.CrossRefGoogle ScholarPubMed
Hamori, E., Arndt-Jovin, D.J., Grimwade, B.G. & Jovin, T.M. (1980). Selection of viable cells with known DNA. Content Cytometry 1(2), 132135.CrossRefGoogle ScholarPubMed
Hanna, C., Menges, S., Kraemer, D. & Long, C.R. (2008). Synchronisation of canine germinal vesicle stage oocytes prior to in vitro maturation alters the kinetics of nuclear progression during subsequent resumption of meiosis. Reprod Fertil Dev 20(5), 606614.Google Scholar
Hatoya, S., Sugiyama, Y., Nishida, H., Okuno, T., Torii, R., Sugiura, K., Kida, K., Kawate, N., Tamada, H. & Inaba, T. (2009). Canine oocyte maturation in culture: Significance of estrogen and EGF receptor gene expression in cumulus cells. Theriogenology 71(4), 560567.Google Scholar
Hewitt, D.A., Watson, P.F. & England, G.C.W. (1998). Nuclear staining and culture requirements for in vitro maturation of domestic bitch oocytes. Theriogenology 49, 10831101.CrossRefGoogle ScholarPubMed
Hossein, M.S., Kim, M.K., Jang, G., Oh, H.J., Koo, O., Kim, J.J., Kang, S.K., Lee, B.C. & Hwang, W.S. (2007). Effects of thiol compounds on in vitro maturation of canine oocytes collected from different reproductive stages. Mol Reprod Dev 74(9), 12131220.Google Scholar
Jang, G., Hong, S., Kang, J., Park, J., Oh, H., Park, C., Ha, J., Kim, D., Kim, M. & Lee, B. (2009). Conservation of the Sapsaree (Canis familiaris), a Korean Natural Monument, using somatic cell nuclear transfer. J Vet Med Sci 71(9), 12171220.Google Scholar
Kim, M.K., Fibrianto, Y.H., Oh, H.J., Jang, G., Kim, H.J., Lee, K.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2004). Effet of betamercaptoethanol or epidermal growth factor supplementation on in vitro maturation of canine oocyte collected from dogs with different stage of the estrus cycle. J Vet Sci 5, 253258.CrossRefGoogle ScholarPubMed
Kim, M.K., Fibrianto, Y.H., Oh, H.J., Jang, G., Kim, H.J., Lee, K.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). Effects of estradiol-17b and progesterone supplementation on in vitro nuclear maturation of canine oocytes. Theriogenology 63, 13421353.CrossRefGoogle Scholar
Kuetemeyer, K., Lucas-Hahn, A., Petersen, B., Lemme, E., Hassel, P., Niemann, H. & Heisterkamp, A. (2010). Combined multiphoton imaging and automated functional enucleation of porcine oocytes using femtosecond laser pulses. J Biomed Opt 15(4), 046006.Google Scholar
Lee, E., Kim, J.H., Park, S.M., Jeong, Y.I., Lee, J.Y., Park, S.W., Choi, J., Kim, H.S., Jeong, Y.W., Kim, S., Hyun, S.H. & Hwang, W.S. (2008). The analysis of chromatin remodeling and the staining for DNA methylation and histone acetylation do not provide definitive indicators of the developmental ability of inter-species cloned embryos. Anim Reprod Sci 105(3-4), 438450.Google Scholar
Lee, H.S., Seo, Y.I., Yin, X.J., Cho, S.G., Lee, S.S., Kim, N.H., Cho, S.K. & Kong, I.K. (2007a). Effect of follicle stimulation hormone and luteinizing hormone on cumulus cell expansion and in vitro nuclear maturation of canine oocytes. Reprod Domest Anim 42(6), 561565.Google Scholar
Lee, S.R., Kim, B.S., Kim, J.W., Kim, M.O., Kim, S.H., Yoo, D.H., Shin, M.J., Park, Y.S., Lee, S., Park, Y.B., Ha, J.H. & Ryoo, Z.Y. (2007b). In vitro maturation, in vitro fertilization and embryonic development of canine oocytes. Zygote 15(4), 347353.CrossRefGoogle ScholarPubMed
Lee, S.R., Kim, M.O., Sung, H.K., Kim, B.S., Yoo, D.H., Park, Y.S., Park, Y.B., Ha, J.H. & Ryoo, Z.Y. (2007c). Effect of conditioned medium of mouse embryonic fibroblasts produced from EC-SOD transgenic mice in nuclear maturation of canine oocytes in vitro. Anim Reprod Sci 99, 106116.Google Scholar
Li, G.P., White, K.L. & Bunch, T.D. (2004). Review of enucleation methods and procedures used in animal cloning: State of the art. Cloning Stem Cells 6(1), 513.Google Scholar
Liu, Y., Sui, H.S., Wang, H.L., Yuan, J.H., Luo, M.J., Xia, P. & Tan, J.H. (2006). Germinal vesicle chromatin configurations of bovine oocytes. Microsc Res Tech 69(10), 799807.Google Scholar
Luvoni, G.C., Chigioni, S., Allievi, E. & Macis, D. (2003). Meiosis resumption of canine oocytes cultured in the isolated oviduct. Reprod Domest Anim 38, 410414.Google Scholar
Luvoni, G.C., Chigioni, S., Allievi, E. & Macis, D. (2005). Factors involved in in vivo and in vitro maturation of canine oocyte. Theriogenology 63, 4159.Google Scholar
Miyara, F., Migne, C., Dumont-Hassan, M., Le Meur, A., Cohen-Bacrie, P., Aubriot, F.X., Glissant, A., Nathan, C., Douard, S., Stanovici, A. & Debey, P. (2003). Chromatin configuration and transcriptional control in human and mouse oocytes. Mol Reprod Dev 64(4), 458470.Google Scholar
Otoi, T., Shimizu, R., Naoi, H., Wongsrikeao, P., Agung, B. & Taniguchi, M. (2006). Meiotic competence of canine oocytes embedded in collagen gel. Reprod Dom Anim 41, 1721.CrossRefGoogle ScholarPubMed
Otoi, T., Shin, T., Kraemer, D.C. & Westhusin, M.E. (2004). Influence of maturation culture period on the development of canine oocytes after in vitro maturation and fertilization. Reprod Nutr Dev 44(6), 631637.Google Scholar
Otoi, T., Shin, T., Kraemer, D.C. & Westhusin, M.E. (2007). Role of cumulus cells on in vitro maturation of canine oocytes. Reprod Domest 42(2), 184189.Google Scholar
Otoi, T., Willingham, L., Shin, T., Kraemer, D.C. & Westhusin, M. (2002). Effects of oocyte culture density on meiotic competence of canine oocytes. Reproduction 124(6), 775781.CrossRefGoogle ScholarPubMed
Reynaud, K., Fontbonne, A., Marseloo, N., Thoumire, S., Chebrout, M., De Lesegno, C.V. & Chastant-Maillard, S. (2005). In vivo meiotic resumption, fertilization and early embryonic development in the bitch. Reproduction 130(2), 193201.Google Scholar
Reynaud, K., Saint-Dizier, M. & Chastant-Maillard, S. (2004). In vitro maturation and fertilization of canine oocytes. Methods in molecular biology. In Germ Cell Protocols. Vol 1: Sperm and Oocyte Analysis, Schatten, H. (Ed.), pp. 255272. New York: Humana Press.CrossRefGoogle Scholar
Rodrigues, B. & Rodrigues, J.L. (2003). Influence of reproductive status on in vitro oocyte maturation in dogs. Theriogenology 60(1), 5966.Google Scholar
Rodrigues, B.A., dos Santos, L.C. & Rodrigues, J.L. (2006). The effect of hyaluronan concentrations in hST-supplemented TCM 199 on in vitro nuclear maturation of bitch cumulus-oocyte complexes. Theriogenology 66(6-7), 16731676.Google Scholar
Rodrigues, B. de A., dos Santos, L.C. & Rodrigues, J.L. (2004). Embryonic development of in vitro matured and in vitro fertilized dog oocytes. Mol Reprod Dev 67(2), 215223.Google Scholar
Rodrigues, B.A., Silva, A.E., Rodriguez, P., Cavalcante, L.F. & Rodrigues, J.L. (2009). Cumulus cell features and nuclear chromatin configuration of in vitro matured canine COCs and the influence of in vivo serum progesterone concentrations of ovary donors. Zygote 17(1), 7991.CrossRefGoogle ScholarPubMed
Saikhun, J., Sriussadaporn, S., Thongtip, N., Pinyopummin, A. & Kitiyanant, Y. (2008). Nuclear maturation and development of IVM/IVF canine embryos in synthetic oviductal fluid or in co-culture with buffalo rat liver cells. Theriogenology 69, 11041110.Google Scholar
Saint-Dizier, M., Renard, J.P. & Chastant-Maillard, S. (2001). Induction of final maturation by sperm penetration in canine oocytes. Reproduction 121, 97105.CrossRefGoogle ScholarPubMed
Saint-Dizier, M., Reynaud, K. & Chastant-Maillard, S. (2004). Chromatin, microtubules, and kinases activities during meiotic resumption in bitch oocytes. Mol Reprod Dev 68(2), 205212.Google Scholar
Silva, A.E., Rodriguez, P., Cavalcante, L.F., Rodrigues, B.A. & Rodrigues, J.L. (2009). The influence of oxygen tension on cumulus cell viability of canine COCs matured in high-glucose medium. Reprod Domest Anim 44(Suppl 2), 259262.Google Scholar
Smith, L.C. (1993). Membrane and intracellular effects of ultraviolet irradiation with Hoechst 33342 on bovine secondary oocytes matured in vitro. J Reprod Fertil 99(1), 3944.Google Scholar
Suzukamo, C., Hoshina, M., Moryia, H., Hishiyama, N., Nakamura, S., Kawai, F., Sato, H., Ariga, M., Ito, J. & Kashiwazaki, N. (2009). Kinetics of nuclear status and kinase activities during in vitro maturation of canine oocytes. J Reprod Dev 55(2), 116120.Google Scholar
Tan, J.H., Wang, H.L., Sun, X.S., Liu, Y., Sui, H.S. & Zhang, J. (2009). Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol Hum Reprod 15(1), 19.CrossRefGoogle ScholarPubMed
Tesoriero, J.V. (1982). A morphological, cytochemical, and chromatographic analysis of lipid yolk formation in the oocytes of the dog. Gamete Res 6, 267279.CrossRefGoogle Scholar
Tsunoda, Y., Shioda, M., Onodera, K., Nakamura, K. & Uchida, T. (1988). Differential sensitivity of mouse pronuclei and zygote cytoplasm to Hoechst staining and ultraviolet irradiation. J Reprod Fert 82, 173178.CrossRefGoogle ScholarPubMed
Vannucchi, C.I., de Oliveira, C.M., Marques, M.G., Assumpção, M.E. & Visintin, J.A. (2006). In vitro canine oocyte nuclear maturation in homologous oviductal cell co-culture with hormone-supplemented media. Theriogenology 66(6-7), 16771681.CrossRefGoogle ScholarPubMed
Vannucchi, C.I., Faustino, M., Marques, M.G., Nichi, M., Assumpção, M.E. & Visintin, J.A. (2009). Effects of gonadotropin-exposed medium with high concentrations of progesterone and estradiol-17beta on in vitro maturation of canine oocytes. In Vitro Cell Dev Biol Anim 45(7), 328333.CrossRefGoogle ScholarPubMed
Velilla, E., López-Béjar, M., Rodríguez-González, E., Vidal, F. & Paramio, M.T. (2002). Effect of Hoechst 33342 staining on developmental competence of prepubertal goat oocytes. Zygote 10(3), 201208.Google Scholar
Verlhac, M.H., Kubiak, J.C., Clarke, H.J. & Maro, B. (1994). Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120, 10171025.CrossRefGoogle Scholar
Willingham-Rocky, L.A., Hinrichs, K., Westhusin, M.E. & Kraemer, D.C. (2003). Effects of stage of oestrous cycle and progesterone supplementation during culture on maturation of canine oocytes in vitro. Reproduction 126, 501508.Google Scholar
Zuccotti, M., Ponce, R.H., Boiani, M., Guizzardi, S., Govoni, P., Scandroglio, R., Garagna, S. & Redi, C.A. (2002). The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10(1), 7378.Google Scholar