Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T04:10:53.213Z Has data issue: false hasContentIssue false

The Relationship Between Atomic Structure and Strain Distribution of Misfit Dislocation Cores at Cubic Heteroepitaxial Interfaces

Published online by Cambridge University Press:  09 March 2017

Cai Wen*
Affiliation:
School of Science, Southwest University of Science and Technology, Mianyang 621010, China Department of Physics, Arizona State University, Tempe, AZ 85287, USA
*
*Corresponding author. [email protected]
Get access

Abstract

The atomic reconstruction of a misfit dislocation (MD) core causes change in the strain distribution around the core. Several MD cores at the AlSb/GaAs (001) cubic zincblende interface, including a symmetrical glide set Lomer dislocation (LD), a left-displaced glide set LD, a glide set LD with an atomic step, a symmetrical shuffle set LD, and a 60° dislocation pair, were studied using simulated projected potential and aberration-corrected transmission electron microscope images. Image deconvolution was also used to restore structure images from nonoptimum-defocus images. The corresponding biaxial strain maps, εxx (in-plane) and εyy (out-of-plane), were obtained by geometric phase analysis using the GaAs substrate as the reference lattice. The results show that atomic structure characteristics of MD cores can be revealed by the strain maps. The strain maps should be measured from optimum-defocus images or restored structure images. Furthermore, the εxx strain map has been found more accurate than the εyy strain map for MD cores, and the specimen thickness should be below the critical thickness due to the influence of dynamical scattering.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolkhovityanov, Y.B., Deryabin, A.S., Gutakovskii, A.K. & Sokolov, L.V. (2011). Mechanisms of edge-dislocation formation in strained films of zinc blende and diamond cubic semiconductors epitaxially grown on (001)-oriented substrates. J Appl Phys 109(12), 123519.CrossRefGoogle Scholar
Bolkhovityanov, Y.B., Deryabin, A.S., Gutakovskii, A.K. & Sokolov, L.V. (2013). Mechanism of induced nucleation of misfit dislocations in the Ge-on-Si(001) system and its role in the formation of the core. Acta Mater 61(2), 617621.CrossRefGoogle Scholar
Chung, J. & Rabenberg, L. (2007). Measurement of incomplete strain relaxation in a silicon heteroepitaxial film by geometrical phase analysis in the transmission electron microscope. Appl Phys Lett 91(23), 231902.CrossRefGoogle Scholar
Chung, J. & Rabenberg, L. (2008). Effects of strain gradients on strain measurements using geometrical phase analysis in the transmission electron microscope. Ultramicroscopy 108(12), 15951602.CrossRefGoogle ScholarPubMed
Coene, W., Janssen, G., Op de Beeck, M. & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69(26), 37433746.CrossRefGoogle ScholarPubMed
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10, 609619.CrossRefGoogle Scholar
Desplanque, L., El Kazzi, S., Codron, J.L., Wang, Y., Ruterana, P., Moschetti, G., Grahn, J. & Wallart, X. (2012). AlSb nucleation induced anisotropic electron mobility in AlSb/InAs heterostructures on GaAs. Appl Phys Lett 100(26), 262103.CrossRefGoogle Scholar
Galindo, P.L., Kret, S., Sanchez, A.M., Laval, J.Y., Yanez, A., Pizarro, J., Guerrero, E., Ben, T. & Molina, S.I. (2007). The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107(12), 11861193.CrossRefGoogle ScholarPubMed
Ge, B.H., Wang, Y.M., Luo, H.Q., Wen, H.H., Yu, R., Cheng, Z.Y. & Zhu, J. (2015). Determination of the incommensurate modulated structure of Bi2Sr1.6La0.4CuO6+δ by aberration-corrected transmission electron microscopy. Ultramicroscopy 159, 6772.CrossRefGoogle ScholarPubMed
Gosling, T.J. (1993). Mechanism for the formation of 90° dislocations in high-mismatch (100) semiconductor strained-layer systems. J Appl Phys 74(9), 54155420.CrossRefGoogle Scholar
Guerrero, E., Galindo, P., Yanez, A., Ben, T. & Molina, S.I. (2007). Error quantification in strain mapping methods. Microsc Microanal 13(5), 320328.CrossRefGoogle ScholarPubMed
Han, F.S., Fan, H.F. & Li, F.H. (1986). Image processing in high-resolution electron microscopy using the direct method. II. Image deconvolution. Acta Crystallogr A 42, 353356.CrossRefGoogle Scholar
Hartley, C.S. & Mishin, Y. (2005). Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Mater 53(5), 13131321.CrossRefGoogle Scholar
He, X.Q., Wen, C., Duan, X.F. & Chen, H. (2011). Identification of atomic steps at AlSb/GaAs hetero-epitaxial interface using geometric phase method by high-resolution electron microscopy. Mater Lett 65(3), 456459.CrossRefGoogle Scholar
Hornstra, J. (1958). Dislocations in the diamond lattice. J Phys Chem Solids 5(1–2), 129141.CrossRefGoogle Scholar
Hu, J.J. & Li, F.H. (1991). Maximum entropy image deconvolution in high resolution electron microscopy. Ultramicroscopy 35(3–4), 339350.CrossRefGoogle Scholar
Hÿtch, M.J. & Plamann, T. (2001). Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87(4), 199212.CrossRefGoogle ScholarPubMed
Hÿtch, M.J., Putaux, J.L. & Penisson, J.M. (2003). Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270273.CrossRefGoogle ScholarPubMed
Hÿtch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3), 131146.CrossRefGoogle Scholar
Inamoto, S., Yamasaki, J., Tamaki, H. & Tanaka, N. (2011). Atomic arrangement at the 3C-SiC/Si(001) interface revealed utilising aberration-corrected transmission electron microscope. Philos Mag Lett 91(9), 632639.CrossRefGoogle Scholar
Jia, C.L., Lentzen, M. & Urban, K. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10(2), 174184.CrossRefGoogle ScholarPubMed
Kim, H.S., Noh, Y.K., Kim, M.D., Kwon, Y.J., Oh, J.E., Kim, Y.H., Lee, J.Y., Kim, S.G. & Chung, K.S. (2007). Dependence of the AlSb buffers on GaSb/GaAs(001) heterostructures. J Cryst Growth 301–302, 230234.CrossRefGoogle Scholar
Kirkland, A.I., Saxton, W.O., Chau, K.L., Tsuno, K. & Kawasaki, M. (1995). Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM. Ultramicroscopy 57(4), 355374.CrossRefGoogle Scholar
Kret, S., Dluzewski, P., Dluzewski, P. & Laval, J.Y. (2003). On the measurement of dislocation core distributions in a GaAs/ZnTe/CdTe heterostructure by high-resolution transmission electron microscopy. Philos Mag 83(2), 231244.CrossRefGoogle Scholar
Kret, S., Dluzewski, P., Dluzewski, P. & Sobczak, E. (2000). Measurement of dislocation core distribution by digital processing of high-resolution transmission electron microscopy micrographs: A new technique for studying defects. J Phys Condens Matter 12(49), 1031310318.CrossRefGoogle Scholar
Kret, S., Ruterana, P., Rosenauer, A. & Gerthsen, D. (2001). Extracting quantitative information from high resolution electron microscopy. Phys Status Solidi B 227(1), 247295.3.0.CO;2-F>CrossRefGoogle Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K. & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92(3–4), 233242.CrossRefGoogle ScholarPubMed
Li, F.H. (2010). Developing image-contrast theory and analysis methods in high-resolution electron microscopy. Phys Status Solidi A 207(12), 26392665.CrossRefGoogle Scholar
Li, F.H. & Fan, H.F. (1979). Image deconvolution in high resolution electron microscopy by making use of Sayre’s equation. Acta Phys Sin 28(2), 276278.Google Scholar
Li, F.H. & Tang, D. (1985). Pseudo-weak-phase-object approximation in high-resolution electron microscopy. I. Theory. Acta Crystallogr A 41, 376382.CrossRefGoogle Scholar
Li, J.J., Zhao, C.W., Xing, Y.M., Su, S.J. & Cheng, B.W. (2013). Full-field strain mapping at a Ge/Si heterostructure interface. Materials 6(6), 21302142.CrossRefGoogle Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38(1), 1322.CrossRefGoogle Scholar
Lopatin, S., Pennycook, S.J., Narayan, J. & Duscher, G. (2002). Z-contrast imaging of dislocation cores at the GaAs/Si interface. Appl Phys Lett 81(15), 27282730.CrossRefGoogle Scholar
McGibbon, A.J., Pennycook, S.J. & Angelo, J.E. (1995). Direct observation of dislocation core structures in CdTe/GaAs(001). Science 269(5223), 519521.CrossRefGoogle ScholarPubMed
Narayan, J. & Oktyabrsky, S. (2002). Formation of misfit dislocations in thin film heterostructures. J Appl Phys 92(12), 71227127.CrossRefGoogle Scholar
Ripalda, J.M., Sanchez, A.M., Taboada, A.G., Rivera, A., Alen, B., Gonzalez, Y., Gonzalez, L., Briones, F., Rotter, T.J. & Balakrishnan, G. (2012). Relaxation dynamics and residual strain in metamorphic AlSb on GaAs. Appl Phys Lett 100(1), 012103.CrossRefGoogle Scholar
Rosner, H., Koch, C.T. & Wilde, G. (2010). Strain mapping along Al–Pb interfaces. Acta Mater 58(1), 162172.CrossRefGoogle Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20(1), 2029.CrossRefGoogle Scholar
Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. In Proceedings of the Fourth European Regional Conference on Electron Microscopy, Bocciarelli, D.S. (Ed.), pp. 145146. Rome: The European Microscopy Society.Google Scholar
Schramm, S.M., van der Molen, S.J. & Tromp, R.M. (2012). Intrinsic instability of aberration-corrected electron microscopes. Phys Rev Lett 109(16), 163901.CrossRefGoogle ScholarPubMed
Smith, D.J. (2013). Atomic-scale characterization of II-VI compound semiconductors. J Electron Mater 42(11), 31683174.CrossRefGoogle Scholar
Snoeck, E., Warot, B., Ardhuin, H., Rocher, A., Casanove, M.J., Kilaas, R. & Hÿtch, M.J. (1998). Quantitative analysis of strain field in thin films from HRTEM micrographs. Thin Solid Films 319(1–2), 157162.CrossRefGoogle Scholar
Stirman, J.N., Crozier, P.A., Smith, D.J., Phillipp, F., Brill, G. & Sivananthan, S. (2004). Atomic-scale imaging of asymmetric Lomer dislocation cores at the Ge/Si(001) heterointerface. Appl Phys Lett 84(14), 25302532.CrossRefGoogle Scholar
Tang, C.Y., Chen, J.H., Zandbergen, H.W. & Li, F.H. (2006). Image deconvolution in spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 106(6), 539546.CrossRefGoogle ScholarPubMed
Tang, D., Teng, C.M., Zou, J. & Li, F.H. (1986). Pseudo-weak-phase-object approximation in high-resolution electron microscopy. II. Feasibility of directly observing Li+ . Acta Crystallogr B 42, 340342.CrossRefGoogle Scholar
Thust, A., Coene, W.M.J., Op de Beeck, M. & Van Dyck, D. (1996). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64(1–4), 211230.CrossRefGoogle Scholar
Vila, A., Cornet, A. & Morante, J.R. (1996). Atomic scale study of the interaction between misfit dislocations at the GaAs/Si interface. Appl Phys Lett 68(9), 12441246.CrossRefGoogle Scholar
Vila, A., Cornet, A., Morante, J.R., Ruterana, P., Loubradou, M., Bonnet, R., Gonzalez, Y. & Gonzalez, L. (1995). Atomic core structure of Lomer dislocation at GaAs/(001)Si interface. Philos Mag A 71(1), 85103.CrossRefGoogle Scholar
Wang, Y. & Ruterana, P. (2013). The strain models of misfit dislocations at cubic semiconductors hetero-interfaces. Appl Phys Lett 103(10), 102105.CrossRefGoogle Scholar
Wang, Y., Ruterana, P., Desplanque, L., El Kazzi, S. & Wallart, X. (2011). Strain relief at the GaSb/GaAs interface versus substrate surface treatment and AlSb interlayers thickness. J Appl Phys 109(2), 023509.CrossRefGoogle Scholar
Wang, Y., Ruterana, P., Kret, S., Chen, J., El Kazzi, S., Desplanque, L. & Wallart, X. (2012). Mechanism of formation of the misfit dislocations at the cubic materials interfaces. Appl Phys Lett 100(26), 262110.CrossRefGoogle Scholar
Wen, C., Li, F.H., Zou, J. & Chen, H. (2010). High-resolution electron microscopy of misfit dislocations in AlSb/GaAs (001) system. Acta Phys Sin 59(3), 19281937.CrossRefGoogle Scholar
Wen, C., Wan, W., Li, F.H. & Tang, D. (2015). Restoring defect structures in 3C-SiC/Si (001) from spherical aberration-corrected high-resolution transmission electron microscope images by means of deconvolution processing. Micron 71, 2231.CrossRefGoogle ScholarPubMed
Wen, C., Wang, Y.M., Wan, W., Li, F.H., Liang, J.W. & Zou, J. (2009). Nature of interfacial defects and their roles in strain relaxation at highly lattice mismatched 3C-SiC/Si (001) interface. J Appl Phys 106(7), 073522.CrossRefGoogle Scholar
Willems, B., Nistor, L.C., Ghica, C. & Van Tendeloo, G. (2005). Strain mapping around dislocations in diamond and cBN. Phys Status Solidi A 202(11), 22242228.CrossRefGoogle Scholar