Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T19:58:55.008Z Has data issue: false hasContentIssue false

Quantitative Assessment and Measurement of X-ray Detector Performance and Solid Angle in the Analytical Electron Microscope

Published online by Cambridge University Press:  09 December 2021

Nestor J. Zaluzec*
Affiliation:
Argonne National Laboratory, Photon Science Directorate, Argonne, IL 60439, USA
*
Get access

Abstract

A wide range of X-ray detectors and geometries are available today on transmission/scanning transmission analytical electron microscopes. While there have been numerous reports of their individual performance, no single experimentally reproducible metric has been proposed as a basis of comparison between the systems. In this paper, we detail modeling, experimental procedures, measurements, and specimens which can be used to provide a manufacturer-independent assessment of the performance of an analytical system. Using these protocols, the geometrical collection efficiency, system peaks, and minimum detection limits can be independently assessed and can be used to determine the best conditions to conduct modern hyperspectral and/or spectrally resolved tomographic analyses for an individual instrument. A simple analytical formula and specimen is presented which after suitable system calibrations can be used to experimentally determine the X-ray detector solid angle.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argonne National Laboratory (2010). High collection efficiency X-ray spectrometer system with integrated electron beam stop, electron detector and X-ray detector for use on electron-optical beam lines and microscopes. US Patent 8,314,386.Google Scholar
Atomic and Nuclear Data Tables (2021). Elsevier Press – ScienceDirect.Google Scholar
Bambynek, W, Crasemann, B, Fink, RW, Freund, H-U, Mark, H, Swift, CD, Price, RE & Rao, PV (1972). X- ray fluorescence yields, Auger, and Coster-Kronig transition probabilities. Rev Mod Phys 44, 716813.CrossRefGoogle Scholar
Barkan, S, Saveliev, VD, Iwanczyk, JS, Feng, L, Tull, CR, Patt, BE, Newbury, DE, Small, JA & Zaluzec, NJ (2004). New improved silicon multi-cathode detector, (SMCD) for microanalysis. Micros Today 12(6), 36.CrossRefGoogle Scholar
Bethe, H (1930). Zur Theorie des Durchganages schneller Korpuskularstrahlen durch Materie. Ann Phys 397, 325.CrossRefGoogle Scholar
Bowman, HR, Hyde, EK, Thompson, SG & Jared, C (1966). Application of high-resolution semiconductor detectors in X-ray emission spectrography. Science 151, 562568.CrossRefGoogle ScholarPubMed
Chen, MH & Crasemann, B (1981). Widths and fluorescence yields of atomic L-shell vacancy states. Phys Rev A24, 177182.CrossRefGoogle Scholar
Chen, W, Kraner, H, Li, Z, Rehak, P, Gatti, E, Longni, A, Sampietro, M, Holl, P, Kemmer, J, Faschingbauer, U, Schmitt, B, Woner, A & Wurm, JP (1992). Large area cylindrical silicon drift detector. IEEE Trans Nucl Sci 39, 619.CrossRefGoogle Scholar
Cliff, G & Lorimer, GW (1972). Quantitative analysis of thin metal foils using EMMA-4. Proceedings of 5th European Congress on Electron Microscopy. Institute of Physics, Bristol, p. 140.Google Scholar
Fano, U (1954). Ionizing collisions of very fast particles and the dipole strength of optical transitions. Phys Rev 95, 1198.CrossRefGoogle Scholar
Fitzgerald, R, Keil, K & Heinrich, KFJ (1968). Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science 159(3814), 528530.CrossRefGoogle ScholarPubMed
Gatti, E & Rehak, P (1984). Semiconductor drift chamber – an application of a novel charge transport scheme. Nucl Instr Meth Phys Res 225, 608.CrossRefGoogle Scholar
Goldstein, JI, Costley, JL, Lorimer, GW & Reed, SJB (1977). Quantitative X-ray analysis in the electron microscope. SEM/1977, 1, ed. O. Johari, IITRI, Chicago, IL, p. 315.Google Scholar
Howe, JY, Ramprasad, T, Hanawa, A, Inada, H, Jimenez, J, Hoyle, D, Voelkl, E & Zega, T (2017). Collection efficiency of the twin EDS detectors for quantitative X-ray analysis on a new probe-corrected TEM/STEM. Microsc Microanal 23(Suppl 1), 520521.CrossRefGoogle Scholar
Inokuti, M (1971). Inelastic collisions of fast charged particles with atoms and molecules – The Bethe theory revisited. Rev Mod Phys 43, 297.CrossRefGoogle Scholar
Iwanczyk, JS, Patt, BE, Tull, CR & Barkan, S (2001). High-throughput, large area silicon X-ray detectors for high-resolution spectroscopy applications. Micro Microanal 7(S2), 1052.CrossRefGoogle Scholar
Iwanczyk, JS, Patt, BE, Vilkelis, G, Rehn, L, Metz, J, Hedman, B & Hodgson, K (1996). Simulation and modeling of a new silicon drift chamber X-ray detector design for synchrotron radiation applications. Nucl Instr & Meth Phys Res A380, 288.CrossRefGoogle Scholar
Krause, MO (1979). Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8, 307327.CrossRefGoogle Scholar
Llovet, X, Powell, CJ, Salvat, F & Joblonski, A (2014). Cross sections for inner-shell ionization by electron impact. J Phys Chem Ref Data 43, 13102.CrossRefGoogle Scholar
Lorimer, GW, Razik, NA & Cliff, G (1973). The use of the analytical electron microscope EMMA-4 to study the solute distribution in thin foils: Some applications to metals and minerals. J Microsc 99, 153164.CrossRefGoogle Scholar
Lyman, CE, Goldstein, JI, Williams, DB, Ackland, DW, von Harrach, HS, Nicholls, AW & Statham, PJ (1994). High-performance X-ray detection in a new analytical electron microscope. J Microsc 176, 85.CrossRefGoogle Scholar
Niculae, A, Lechner, P, Soltau, H, Lutz, G, Struder, L, Fiorini, C & Longoni, A (2006). Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy. Nucl Instrum Methods Phys Res A 568(1), 336342. doi:10.1016/j.nima.2006.06.025CrossRefGoogle Scholar
Powell, CJ (1990). Inner-shell ionization cross sections. In Microbeam Analysis-1990, Michael, JR & Ingram, P (Eds.), pp. 1320. San Francisco, CA: San Francisco Press.Google Scholar
Powell, CJ, Llovet, X & Salvatg, F (2016). Use of the Bethe equation for inner-shell ionization by electron impact. J Appl Phys 119, 184904.CrossRefGoogle ScholarPubMed
Schamber, F (2015). Characterizing the geometric detection efficiency of EDX detectors. Microsc Microanal 21(S3), 1479.CrossRefGoogle Scholar
Schreiber, TP & Wims, M (1981). A quantitative X-ray microanalysis thin film method using K-, L-, and M-lines. Ultramicroscopy 6, 323334.CrossRefGoogle Scholar
Scofield, JH (1974). Relativistic Hartree-Slater values for K and L X-ray emission rates. At Data Nucl Data Tables 14(2), 121.CrossRefGoogle Scholar
Tordoff, B, Beam, S, Schweitzer, M, Hill, E, Kugler, V & Png, K (2012). Introducing twin X-ray detectors and fast backscattered electron imaging through a new field emission SEM from Carl Zeiss. Proceedings of EMC-2012, Manchester, September, PS2.2.Google Scholar
Von Harrach, HS, Dona, P, Freitag, B, Soltau, H, Niculae, A & Rohde, M (2009). An integrated silicon drift detector system for FEI Schottkey field emission transmission electron microscopes. Microsc Microanal 15(S2), 208209.CrossRefGoogle Scholar
Watanabe, M & Wade, CA (2013). Practical measurement of X-ray detection performance of a large solid-angle silicon drift detector in an aberration-corrected STEM. Microsc Microanal 19(S2), 1264.CrossRefGoogle Scholar
Zaluzec, NJ (1984). K and L shell cross sections for X-ray microanalysis in an AEM. In Analytical Electron Microscopy, Williams, D (Ed.), pp. 279284. San Francisco: San Francisco Press.Google Scholar
Zaluzec, NJ (1991). Progress on the ANL Advanced AEM Project. Proceedings of Microbeam Analysis Society, San Francisco Press, p. 137.Google Scholar
Zaluzec, NJ (2014). Analytical formulae for calculation of X-ray detector solid angles in the scanning and scanning/transmission analytical electron microscope. Microsc Microanal 20, 13181326.CrossRefGoogle ScholarPubMed
Zaluzec, NJ (2021). First light on the Argonne PicoProbe and the X-ray perimeter array detector (XPAD). Microsc Microanal 27(S1), 2070. doi:10.1017/S1431927621007492CrossRefGoogle Scholar
Zaluzec, NJ, DesOrmeaux, JP & Roussie, J (2016 a). A Ge/SiNx standard for evaluating the performance of X-ray detectors in the SEM, S/TEM and AEM. Microsc Microanal 22, 322323. doi:10.1017/S1431927616002464CrossRefGoogle Scholar
Zaluzec, NJ, Wen, JG, Wang, J & Miller, DJ (2016 b). Quantitative measurements of the penumbra of XEDS systems in an AEM. Microsc Microanal 22, 278279. doi:10.1017/S1431927616002245CrossRefGoogle Scholar
Supplementary material: PDF

Zaluzec supplementary material

Zaluzec supplementary material

Download Zaluzec supplementary material(PDF)
PDF 4.3 MB