Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T06:23:06.529Z Has data issue: false hasContentIssue false

Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling

Published online by Cambridge University Press:  08 April 2016

Robert Estivill*
Affiliation:
University of Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, France Groupe de Physique des Matériaux—GPM UMR CNRS 6634, Université de Rouen, France
Guillaume Audoit
Affiliation:
University of Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Jean-Paul Barnes
Affiliation:
University of Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Adeline Grenier
Affiliation:
University of Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Didier Blavette
Affiliation:
Groupe de Physique des Matériaux—GPM UMR CNRS 6634, Université de Rouen, France
*
*Corresponding author. [email protected]
Get access

Abstract

The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

Type
Technique and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benninghoven, A., Rudenauer, F. & Werner, H.W. (1987). Secondary ion mass spectrometry: Basic concepts, instrumental aspects, applications and trends (Wiley-Interscience).Google Scholar
Bicais-Lepinay, N., Andre, F., Pantel, R., Jullian, S., Margain, A. & Kwakman, L.F.T. (2002). Lift-out techniques coupled with advanced TEM characterization methods for electrical failure analysis. Microelectron Reliab 42(9–11), 17471752.10.1016/S0026-2714(02)00224-XGoogle Scholar
Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993). The tomographic atom-probe—a quantitative 3-dimensional nanoanalytical instrument on an atomic-scale. Rev Sci Instrum 64(10), 29112919.Google Scholar
Cadel, E., Vurpillot, F., Larde, R., Duguay, S. & Deconihout, B. (2009). Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J Appl Phys 106(4), 044908.10.1063/1.3186617Google Scholar
Cooper, D., Hartmann, J.M. & Gambacorti, N. (2011). Low energy Xe milling for the quantitative profiling of active dopants by off-axis electron holography. J Appl Phys 110(4), 044511.10.1063/1.3625262Google Scholar
Desgranges, L. & Pasquet, B. (2004). Measurement of xenon in uranium dioxide (UO2) with SIMS. Nucl Instrum Methods Phys Res B 215(3–4), 545551.10.1016/j.nimb.2003.08.033Google Scholar
Faraci, G., Pennisi, A.R. & Zontone, F. (2006). Fine structure effects and phase transition of Xe nanocrystals in Si. Eur Phys J B 51(2), 209213.Google Scholar
Faraci, G., Pennisi, A.R. & Zontone, F. (2007). Xe nanocrystals in Si studied by X-ray absorption fine structure spectroscopy. Phys Rev B 76(3), 35423.10.1103/PhysRevB.76.035423Google Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77(4), 043705.10.1063/1.2194089Google Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13(6), 437447.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197204.Google Scholar
Gnaser, H., Brodyanski, A. & Reuscher, B. (2008). Focused ion beam implantation of Ga in Si and Ge: Fluence-dependent retention and surface morphology. Surf Interface Anal 40(11), 14151422.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101031120.Google Scholar
Marquis, E.A. & Hyde, J.M. (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R 69(4–5), 3762.Google Scholar
Menzel, N. & Wittmaack, K. (1985). Modification of stationary xenon implantation profiles in silicon by low-energy postbombardment with inert-gas ions. Nucl Instrum Methods Phys Res B 7–8, 366370.10.1016/0168-583X(85)90583-XGoogle Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13(6), 428436.10.1017/S1431927607070845Google Scholar
Miller, M.K. & Smith, G.D.W. (1981). An atom probe study of the anomalous field evaporation of alloys containing silicon. J Vac Sci Technol 19(1), 5762.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109(7), 815824.10.1016/j.ultramic.2009.03.016Google Scholar
Philippe, T., De Geuser, F., Duguay, S., Lefebvre, W., Cojocaru-Miredin, O., Da Costa, G. & Blavette, D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109(10), 13041309.10.1016/j.ultramic.2009.06.007Google Scholar
Rubanov, S. & Munroe, P.R. (2004). FIB-induced damage in silicon. J Microsc 214(3), 213221.10.1111/j.0022-2720.2004.01327.xGoogle Scholar
Rubanov, S. & Munroe, P.R. (2005). Damage in III–V compounds during focused ion beam milling. Microsc Microanal 11(5), 446455.10.1017/S1431927605050294Google Scholar
Silaeva, E.P., Shcheblanov, N.P., Itina, T.P., Vella, A.P., Houard, J.P., Sévelin-Radiguet, N.P., Vurpillot, F.E.O.P. & Deconihout, B.P. (2012). Numerical study of femtosecond laser-assisted atom probe tomography. Appl Phys A 110(3), 703–707.Google Scholar
Silaeva, E.P., Vella, A., Sevelin-Radiguet, N., Martel, G., Deconihout, B. & Itina, T.E. (2013). Ultrafast laser-triggered field ion emission from semiconductor tips. New J Phys 14, 113026.Google Scholar
Smith, N., Kinion, D., Tesch, P. & Boswell, R. (2007). A high brightness plasma source for focused ion beam applications. Microsc Microanal 13(Suppl 2), 180181.10.1017/S1431927607075605Google Scholar
Taklo, M.M., Klumpp, A., Ramm, P., Kwakman, L. & Franz, G. (2011). Bonding and TSV in 3D IC integration: Physical analysis with plasma FIB. Microsc Anal 114(11), 912.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131139.10.1016/j.ultramic.2006.06.008Google Scholar
Vella, A. (2013). On the interaction of an ultra-fast laser with a nanometric tip by laser assisted atom probe tomography: A review. Ultramicroscopy 132, 518.Google Scholar
Volkert, C.A. & Minor, A.M. (2007). Focused ion beam microscopy and micromachining. MRS Bull 32(5), 389399.10.1557/mrs2007.62Google Scholar
Welch, C.C., Goodyear, A.L., Wahlbrink, T., Lemme, M.C. & Mollenhauer, T. (2006). Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas. Microelectron Eng 83(4–9), 11701173.Google Scholar
Williams, P., Franzreb, K., Sobers, R.C. Jr. & Lörinčík, J. (2010). On the effect of oxygen flooding on the detection of noble gas ions in a SIMS instrument. Nucl Instrum Methods Phys Res B 268(17–18), 27582765.10.1016/j.nimb.2010.05.037Google Scholar
Wittmaack, K. (2009). Rapid-relocation model for describing high-fluence retention of rare gases implanted in solids. Nucl Instrum Methods Phys Res B 267(17), 28462857.Google Scholar
Wittmaack, K., Blank, P. & Wach, W. (1978). High fluence retention of noble-gases implanted in silicon. Radiat Eff 39(2), 8195.10.1080/00337577808237907Google Scholar
Wittmaack, K. & Oppolzer, H. (2011). Quantitative characterization of xenon bubbles in silicon: Correlation of bubble size with the damage generated during implantation. Nucl Instrum Methods Phys Res B 269(3), 380385.Google Scholar
Yamamura, Y. & Tawara, H. (1996). Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. At Data Nucl Data Tables 62(2), 149253.Google Scholar