Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T09:22:34.491Z Has data issue: false hasContentIssue false

PosgenPy: An Automated and Reproducible Approach to Assessing the Validity of Cluster Search Parameters in Atom Probe Tomography Datasets

Published online by Cambridge University Press:  21 September 2021

Przemysław Klupś*
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Daniel Haley
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Andrew J. London
Affiliation:
UK Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK
Hazel Gardner
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
James Famelton
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Benjamin M. Jenkins
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Jonathan M. Hyde
Affiliation:
National Nuclear Laboratory, Culham Science Centre, Abingdon OX14 3DB, UK
Paul A.J. Bagot
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
*
*Corresponding author: Przemysław Klupś, E-mail: [email protected]
Get access

Abstract

One of the main capabilities of atom probe tomography (APT) is the ability to not only identify but also characterize early stages of precipitation at length scales that are not achievable by other techniques. One of the most popular methods to identify nanoscale clustering in APT data, based on the density-based spatial clustering of applications with noise (DBSCAN), is used extensively in many branches of research. However, it is common that not all of the steps leading to the selection of certain parameters used in the analysis are reported. Without knowing the rationale behind parameter selection, it may be difficult to compare cluster parameters obtained by different researchers. In this work, a simple open-source tool, PosgenPy, is used to justify cluster search parameter selection via providing a systematic sweep through parameter values with multiple randomizations to minimize a false-positive cluster ratio. The tool is applied to several different microstructures: a simulated material system and two experimental datasets from a low-alloy steel . The analyses show how values for the various parameters can be selected to ensure that the calculated cluster number density and cluster composition are accurate.

Type
Development and Computation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Camus, E & Abromeit, C (1994 a). Analysis of conventional and three-dimensional atom probe data for multiphase materials. J Appl Phys 75(5), 23732382. doi:10.1063/1.356258CrossRefGoogle Scholar
Camus, E & Abromeit, C (1994 b). Correlation and contingency analysis of atom probe data: Diffusion-controlled dissolution of precipitates. Int J Mater Res 85(5), 378382. doi:10.1515/ijmr-1994-850517CrossRefGoogle Scholar
De Geuser, F & Gault, B (2020). Metrology of small particles and solute clusters by atom probe tomography. Acta Mater 188, 406415. doi:10.1016/j.actamat.2020.02.023CrossRefGoogle Scholar
Dong, Y, Etienne, A, Frolov, A, Fedotova, S, Fujii, K, Fukuya, K, Hatzoglou, C, Kuleshova, E, Lindgren, K, London, A, Lopez, A, Lozano-Perez, S, Miyahara, Y, Nagai, Y, Nishida, K, Radiguet, B, Schreiber, DK, Soneda, N, Thuvander, M, Toyama, T, Wang, J, Sefta, F, Chou, P & Marquis, EA (2019). Atom probe tomography interlaboratory study on clustering analysis in experimental data using the maximum separation distance approach. Microsc Microanal 25(2), 356366. doi:10.1017/S1431927618015581CrossRefGoogle Scholar
Ester, M, Kriegel, H-P, Sander, J & Xu, X (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.Google Scholar
Ghamarian, I & Marquis, EA (2019). Hierarchical density-based cluster analysis framework for atom probe tomography data. Ultramicroscopy 200, 2838. doi:10.1016/j.ultramic.2019.01.011CrossRefGoogle ScholarPubMed
Hellman, OC, Vandenbroucke, JA, Rüsing, J, Isheim, D & Seidman, DN (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6(5), 437444. doi:10.1007/S100050010051CrossRefGoogle ScholarPubMed
Hyde, JM, DaCosta, G, Hatzoglou, C, Weekes, H, Radiguet, B, Styman, PD, Vurpillot, F, Pareige, C, Etienne, A, Bonny, G, Castin, N, Malerba, L, Pareige, P & Pareige, P (2017). Analysis of radiation damage in light water reactors: Comparison of cluster analysis methods for the analysis of atom probe data. Microsc Microanal 23(2), 366375. doi:10.1017/S1431927616012678CrossRefGoogle ScholarPubMed
Hyde, JM & English, CA (2000). An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. MRS Proc 650, R6.6. doi:10.1557/PROC-650-R6.6CrossRefGoogle Scholar
Hyde, JM, Marquis, EA, Wilford, KB & Williams, TJ (2011). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111(6), 440447. doi:10.1016/j.ultramic.2010.12.015CrossRefGoogle ScholarPubMed
Jägle, EA, Choi, P-P & Raabe, D (2014). The Maximum separation cluster analysis algorithm for atom-probe tomography: Parameter determination and accuracy. Microsc Microanal 20(6), 16621671. doi:10.1017/S1431927614013294CrossRefGoogle ScholarPubMed
Jenkins, BM, London, AJ, Riddle, N, Hyde, JM, Bagot, PAJ & Moody, MP (2020). Using alpha hulls to automatically and reproducibly detect edge clusters in atom probe tomography datasets. Mater Charact 160, 110078.CrossRefGoogle Scholar
Langer, JS, Bar-on, M & Miller, HD (1975). New computational method in the theory of spinodal decomposition. Phys Rev A 11(4), 14171429. doi:10.1103/PhysRevA.11.1417CrossRefGoogle Scholar
London, A (2019). Cluster Alpha Edge. Retrieved from https://github.com/andyroo101/Cluster-Alpha-Edge.Google Scholar
Marquis, EA, Araullo-Peters, V, Dong, Y, Etienne, A, Fedotova, S, Fujii, K, Fukuya, K, Kuleshova, E, Lopez, A, London, A, Lozano-Perez, S, Nagai, Y, Nishida, K, Radiguet, B, Schreiber, D, Soneda, N, Thuvander, M, Toyama, T, Sefta, F & Chou, P (2019). On the use of density-based algorithms for the analysis of solute clustering in atom probe tomography data. Paper presented at the Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors.CrossRefGoogle Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R Rep 69(4), 3762. doi:10.1016/j.mser.2010.05.001CrossRefGoogle Scholar
Miller, MK & Burke, MG (1992). An atom probe field ion microscopy study of neutron-irradiated pressure vessel steels. J Nucl Mater 195(1), 6882. doi:10.1016/0022-3115(92)90364-QCrossRefGoogle Scholar
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246(1), 442449. doi:10.1016/0039-6028(91)90449-3CrossRefGoogle Scholar
Miller, MK & Russell, KF (2007). Embrittlement of RPV steels: An atom probe tomography perspective. J Nucl Mater 371(1–3), 145160.CrossRefGoogle Scholar
Moody, MP, Stephenson, LT, Liddicoat, PV & Ringer, SP (2007). Contingency table techniques for three dimensional atom probe tomography. Microsc Res Tech 70(3), 258268. doi:10.1002/jemt.20412CrossRefGoogle ScholarPubMed
Odette, GR, Yamamoto, T, Williams, TJ, Nanstad, RK & English, CA (2019). On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models. J Nucl Mater 526, 151863. doi:10.1016/j.jnucmat.2019.151863CrossRefGoogle Scholar
Pareige, P, Auger, P, Bas, P & Blavette, D (1995). Direct observation of copper precipitation in a neutron irradiated FeCu alloy by 3D atomic tomography. Scr Metall Mater 33(7), 10331036. doi:10.1016/0956-716X(95)00329-TCrossRefGoogle Scholar
Reddy, SM, Saxey, DW, Rickard, WDA, Fougerouse, D, Montalvo, SD, Verberne, R & Van Riessen, A (2020). Atom probe tomography: Development and application to the geosciences. Geostand Geoanalytical Res 44(1), 550.CrossRefGoogle Scholar
Schubert, E, Sander, J, Ester, M, Kriegel, HP & Xu, X (2017). DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans Database Syst 42(3), 121.CrossRefGoogle Scholar
Stephenson, LT, Moody, MP, Liddicoat, PV & Ringer, SP (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13(6), 448.CrossRefGoogle ScholarPubMed
Stiller, K, Thuvander, M, Povstugar, I, Choi, P-P & Andrén, HO (2016). Atom probe tomography of interfaces in ceramic films and oxide scales. MRS Bull 41(1), 35.CrossRefGoogle Scholar
Styman, PD, Hyde, JM, Wilford, K & Smith, GDW (2013). Quantitative methods for the APT analysis of thermally aged RPV steels. Ultramicroscopy 132, 258264. doi:10.1016/j.ultramic.2012.12.003CrossRefGoogle ScholarPubMed
Vaumousse, D, Cerezo, A & Warren, PJ (2003). A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221. doi:10.1016/S0304-3991(02)00319-4CrossRefGoogle ScholarPubMed
Wang, J, Schreiber, DK, Bailey, N, Hosemann, P & Toloczko, MB (2019). The application of the OPTICS algorithm to cluster analysis in atom probe tomography data. Microsc Microanal 25(2), 338348. doi:10.1017/S1431927618015386CrossRefGoogle ScholarPubMed
Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, JW, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJ, Groth, P, Goble, C, Grethe, JS, Heringa, J, 't Hoen, PA, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, SA, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J & Mons, B (2016). The FAIR guiding principles for scientific data management and stewardship. Sci Data 3(1), 19.CrossRefGoogle ScholarPubMed
Williams, CA, Haley, D, Marquis, EA, Smith, GD & Moody, MP (2013). Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271278. doi:10.1016/j.ultramic.2012.12.011CrossRefGoogle ScholarPubMed
Zelenty, J, Dahl, A, Hyde, J, Smith, GDW & Moody, MP (2017). Detecting clusters in atom probe data with Gaussian mixture models. Microsc Microanal 23(2), 269278. doi:10.1017/S1431927617000320CrossRefGoogle ScholarPubMed