Published online by Cambridge University Press: 02 September 2013
Fluorescence images present low signal-to-noise ratio (SNR), are corrupted by a type of multiplicative noise with Poisson distribution, and are affected by a time intensity decay due to photoblinking and photobleaching (PBPB) effects. The noise and the PBPB effects together make long-term biological observation very difficult. Here, a theoretical model based on the underlying quantum mechanic physics theory of the observation process associated with this type of image is presented and the common empirical weighted sum of two decaying exponentials is derived from the model. Improvement in the SNR obtained in denoising when the proposed method is used is particularly important in the last images of the sequence where temporal correlation is used to recover information that is sometimes faded and therefore useless from a visual inspection point of view. The proposed PBPB model is included in a Bayesian denoising algorithm previously proposed by the authors. Experiments with synthetic and real data are presented to validate the PBPB model and to illustrate the effectiveness of the model in denoising and reconstruction results.