Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:24:57.210Z Has data issue: false hasContentIssue false

Phase Transformation and Segregation to Lattice Defects in Ni-Base Superalloys

Published online by Cambridge University Press:  14 November 2007

Didier Blavette
Affiliation:
Groupe de Physique des Matériaux, UFR Sciences, site du Madrillet, Avenue de l'Université BP12 76801 St Etienne du Rouvray Cedex, France ONERA/DMMP, 29 avenue de la Division Leclerc, BP72 92322 Châtillon Cedex, France
Emmanuel Cadel
Affiliation:
Groupe de Physique des Matériaux, UFR Sciences, site du Madrillet, Avenue de l'Université BP12 76801 St Etienne du Rouvray Cedex, France
Cristelle Pareige
Affiliation:
Groupe de Physique des Matériaux, UFR Sciences, site du Madrillet, Avenue de l'Université BP12 76801 St Etienne du Rouvray Cedex, France
Bernard Deconihout
Affiliation:
Groupe de Physique des Matériaux, UFR Sciences, site du Madrillet, Avenue de l'Université BP12 76801 St Etienne du Rouvray Cedex, France
Pierre Caron
Affiliation:
Groupe de Physique des Matériaux, UFR Sciences, site du Madrillet, Avenue de l'Université BP12 76801 St Etienne du Rouvray Cedex, France
Get access

Abstract

Nanostructural features of nickel-base superalloys as revealed by atom probe field ion microscopy (APFIM) and atom probe tomography (APT) are reviewed. The more salient information provided by these techniques is discussed through an almost exhaustive analysis of literature over the last 30 years. Atom probe techniques are shown to be able to measure the composition of tiny γ′ precipitates, a few nanometers in size, and to reveal chemical order within these precipitates. Phase separation kinetics in model NiCrAl alloys was investigated with both 3DAP and Monte-Carlo simulation. Results are shown to be in good agreement. Plane by plane analysis of {001} planes of Ni3Al-type γ′ phase makes it possible to estimate the degree of order as well as the preferential sites of various addition elements (Ti, Cr, Co, W, Ta, Re, Ru, etc.) included in superalloys. Clustering effects of Re in the γ solid solution were also exhibited. Due to its ultrahigh depth resolution, the microchemistry of interfaces and grain boundaries can be characterized on an atomic scale. Grain boundaries in Astroloy or N18 superalloys were found to be enriched in B, Mo, and Cr and Al depleted.

Type
Research Article
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babu, S.S., David, S.A. & Miller, M.K. (2000a). Application of atom probe microanalysis for understanding microstructure evolution in nickel-base superalloy welds. Microsc Microanal 6, 350.Google Scholar
Babu, S.S., David, S.A., Vitek, J.M. & Miller, M.K. (1996). Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds. J de Phys IV, C5, Supp Phys III 6, 253258.CrossRefGoogle Scholar
Babu, S.S., David, S.A., Vitek, J.M. & Miller, M.K. (2000b). Precipitation of γ′ from γ during weld thermal cycle: Recent results of APFIM characterization and modelling. In Advanced Technologies for Superalloy Affordability, Proceedings of the 129th TMS Annual Meeting, TMS2000, Chang, K., Srivastava, S.K., Furrer, D.U. & Bain, K.R. (Eds.), p. 83. Warrendale, PA: TMS.
Babu, S.S., Miller, M.K. & Rowe, M.D. (2005). Fine scale γ′ precipitation in Haynes 214 alloy. In Proceedings of Solid-Solid Phase Transformations in Inorganic Materials 2005, Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U. & Soffa, W.A. (Eds.), pp. 523528. Warrendale, PA: TMS.
Beaven, P.A., Delargy, K.M., Miller, M.K. & Smith, G.D.W. (1978). Combined TEM, FIM and atom probe analysis of a nickel based superalloy. Proceedings of the 9th International Congress on Electron Microscopy, Toronto, Sturgess, J.M. (Ed.), Vol. 2, pp. 626627. Toronto, ON: Imperial Press.
Beaven, P.A., Miller, M.K. & Smith, G.D.W. (1977). Microstructure and microcomposition of a cast nickel-based superalloy. In Proceedings of the Institute of Physics Conference on Electron Microscopy and Analysis, pp. 199203. London: Institute of Physics.
Bhadeshia, K.D.H. & Harada, H. (1997). The Monte Carlo simulation of ordering kinetics in Ni-base superalloys. Mater Sci Eng A 223, 19.Google Scholar
Blavette, D. (1990). Etude de la structure fine de superalliages à base nickel par microscopie ionique et microanalyse à la sonde atomique. Rev Sci Tech Déf 6169.Google Scholar
Blavette, D. & Bostel, A. (1984). Phase composition and long range order in phase in a nickel base single crystal superalloy CMSX2: An atom probe study. Acta Metall 32, 811816.CrossRefGoogle Scholar
Blavette, D. & Bostel, A. (1986). FIM atom-probe investigation of the interphase boundary of a nickel-base superalloy. Surf Sci Lett 177, 994998.Google Scholar
Blavette, D., Bostel, A. & Sarrau, J.M. (1985). Atom probe microanalysis of a nickel base superalloy. Metall Trans A 16, 17031711.CrossRefGoogle Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom-probe for three dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Blavette, D., Buchon, A. & Chambreland, S. (1989). Influence of heat treatment on phase composition and fine scale features of some fine nickel base superalloys: A FIM atom-probe investigation. In Proceedings of the Euromat Conference, Aachen. Exner, H.E. & Schumacher, V. (Eds.), pp. 419424. Aachen, Germany: DGM Informations Gesellschaft–Verlag.
Blavette, D., Cadel, E., Fraczkiewicz, A. & Menand, A. (1999a). Three-dimensional atomic-scale imaging of impurity segregation to line-defects. Science 17, 23172319.Google Scholar
Blavette, D., Caron, P. & Khan, T. (1986). An atom-probe investigation of the role of rhenium additions in improving creep resistance of nickel-base superalloys. Scripta Metall 20, 13951400.CrossRefGoogle Scholar
Blavette, D., Caron, P. & Khan, T. (1988). An atom-probe study of some fine-scale microstructural features in Ni-based single crystal superalloys. In Proceedings of Superalloys 88, pp. 305314. Warrendale, PA: TMS.CrossRef
Blavette, D., Deconihout, B., Chambreland, S. & Bostel, A. (1998). Three-dimensional imaging of chemical order with the tomographic atom-probe. Ultramicroscopy 70, 115124.CrossRefGoogle Scholar
Blavette, D., Geandier, G., Cadel, E., Danoix, F. & Menand, A. (1999b). Apports de la Tomographie atomique dans l'observation et l'analyse des joints de grains. J Phys IV, 9, 113121.Google Scholar
Blavette, D., Letellier, L., Racine, A. & Hazotte, A. (1996). Concentration gradients near heterophase boundaries in crept single crystal nickel base superalloys. MMM 7, 185193.CrossRefGoogle Scholar
Blavette, D. & Menand, A. (1994). New developments in atom-probe techniques and potential applications to material science. MRS Bulletin 19(7), 2126.CrossRefGoogle Scholar
Brenner, S.S. & Ming-Jian, H. (1990a). Grain boundary segregation of carbon and boron in Ni3Al + B/C. Scripta Metall Mater 24, 667670.Google Scholar
Brenner, S.S. & Ming-Jian, H. (1990b). On grain boundary phases in B-doped Ni3Al. Scripta Metall Mater 24, 671676.Google Scholar
Brenner, S.S. & Ming-Jian, H. (1991). FIM/atom probe analysis of grain boundaries in B-doped Ni3Al. Scripta Metall Mater 25, 12711276.CrossRefGoogle Scholar
Buchon, A., Bostel, A. & Blavette, D. (1989). Atom-probe study of some fine-scale features in nickel base superalloys. J Phys. C8 50, 401406.CrossRefGoogle Scholar
Buchon, A., Chambreland, S. & Blavette, D. (1990). Etude à la sonde atomique de la composition des phases γ et γ′ et de la chimie locale des superalliages monocristallins CMSX-2 et AMI. Act de Conf du Coll Nat Sup Monoc Nancy 129140.
Burke, M.G. & Miller, M.K. (1991a). Grain boundary intermetallic phases in alloy 718. Mater Res Soc Symp Proc 186, 215218.Google Scholar
Burke, M.G. & Miller, M.K. (1991b). Precipitation in alloy 718: A combined AEM and APFIM investigation. Proc Int Symp Metall Appl Superalloys 718, 625.Google Scholar
Burke, M.G. & Miller, M.K. (2000). The application of AEM and APFIM to the analysis of precipitation behaviour in alloy 718. In Proceedings of the 2nd International Union of Microbeam Analysis Societies, Williams, D.B. & Shimizu, R. (Eds.), pp. 161165. Bristol, UK: Institute of Physics.
Cadel, E., Lemarchand, D., Chambreland, S. & Blavette, D. (1999). Chimie locale et structure des joints de grains dans les superalliages à base de nickel. J Phys IV 9, 147152.Google Scholar
Cadel, E., Lemarchand, D., Chambreland, S. & Blavette, D. (2002). Atom probe tomography investigation of the microstructure of superalloys N18. Acta Mater 50, 957966.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W. & Warren, P.J. (1997). Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum 69, 4958.Google Scholar
Chambreland, S., Walder, A. & Blavette, D. (1988). Early stages of precipitation of γ′ phase in a nickel base superalloy: An atom-probe study. Acta Metall 36, 32053215.CrossRefGoogle Scholar
Chen, Y., Liu, Z.G. & Cao, Y.N. (1988). Atom probe microanalysis of an elinvar type alloy. Scripta Metall 22, 10751078.CrossRefGoogle Scholar
Clément, N., Coujou, A., Calvayrac, Y., Guillet, F., Blavette, D. & Duval, S. (1996). Local order and associated deformation mechanisms of the γ phase of nickel base superalloys. MMM 7, 6584.CrossRefGoogle Scholar
Danoix, F., Auger, P., Bostel, A. & Blavette, D. (1991). Atom probe characterisation of isotropic spinodal decompositions: Spatial convolutions and related bias. Surf Sci 246, 260265.CrossRefGoogle Scholar
Delargy, K.M., Shaw, S.W.K. & Smith, G.D.W. (1986). Effect of heat treatment on the mechanical properties of high-chromium nickel-based superalloy (IN939). Mater Sci Technol 2, 1031.CrossRefGoogle Scholar
Delargy, K.M. & Smith, G.D.W. (1983). Phase composition and phase stability of a high-chromium nickel-based superalloy, IN939. Metall Trans A 14, 17711783.CrossRefGoogle Scholar
Duval, S., Chambreland, S., Caron, P. & Blavette, D. (1994). Phase composition and chemical order in the single crystal nickel base superalloy MC2. Acta Metall Mater 42, 185194.CrossRefGoogle Scholar
Haasen, P. (1985). The early stages of the decomposition of alloys. Metall Trans A 16, 11731184.CrossRefGoogle Scholar
Hill, S.A. & Ralph, B. (1982). Continuous phase separation in a NiAl alloy. Acta Metall 30, 22192225.CrossRefGoogle Scholar
Hopgood, A.A. & Martin, J.W. (1986). The creep behaviour of a nickel-based single-crystal superalloy. Mater Sci Eng 82, 2736.CrossRefGoogle Scholar
Hopgood, A.A., Nicholls, A., Smith, G.D.W. & Martin, J.W. (1988). Effects of heat treatment on phase chemistry and microstructure of single crystal nickel base superalloy. Mater Sci Technol 4, 146152.Google Scholar
Horton, J.A. & Miller, M.K. (1987). Atom probe analysis of grain boundaries in rapidly-solidified Ni3Al. Acta Metall 35, 133141.CrossRefGoogle Scholar
Isheim, D., Hseij, G., Noebe, R.D. & Seidman, D.N. (2005). Nanostructural temporal evolution and solute partitioning in model Ni-based superalloys containing ruthenium, rhenium and tungsten. In Solid-Solid Phase Transformations in Inorganic Materials 2005, Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U. & Soffa, W.E. (Eds.), pp. 309314. Warrendale, PA: TMS.
Jayaram, R. & Miller, M.K. (1995). Influence of phase composition and microstructure on the high temperature creep properties of a model single crystal nickel-base superalloy: An atom probe/AEM study. Acta Metall Mater 43, 19791986.CrossRefGoogle Scholar
Kindrachuk, V., Wanderka, N., Banhart, J., Mukherji, D., Del Genovesse, D. & Rosler, J. (2004). Intergranular precipitation in Inconel 706: 3D atom-probe and HRTEM investigation. Steel Res Int 75, 74.CrossRefGoogle Scholar
Kuehmann, C.J. & Voorhees, P.W. (1996). Ostwald ripening in ternary alloys. Metall Mater Trans A 27, 937.CrossRefGoogle Scholar
Lemarchand, D., Cadel, E., Chambreland, S. & Blavette, D. (2002). Investigation of grain boundary structure-segregation relationship in a N18 nickel-based superalloy. Phil Mag A 82, 16511669.CrossRefGoogle Scholar
Letellier, L., Bostel, A. & Blavette, D. (1994a). Direct observation of boron segregation at grain-boundaries in Astroloy by atomic tomography. Scripta Metall 30, 15031508.Google Scholar
Letellier, L., Guttmann, M. & Blavette, D. (1994b). Atomic scale investigation of grain-boundary microchemistry in boron-doped nickel-base superalloys Astroloy with a 3D atom-probe. Phil Mag 70, 189194.Google Scholar
Lifshitz, I.M. & Slyozov, V.V. (1961). The kinetics of precipitation from supersaturated solid-solutions. J Phys Chem Solids 19, 3550.CrossRefGoogle Scholar
Marteau, L., Pareige, C. & Blavette, D. (2001). Imaging the three orientation variants of the DO22 phase by 3DAP microscopy. J Microsc 204, 247251.CrossRefGoogle Scholar
Melmed, A.J., Twigg, M.E., Klein, R., Kaufman, M.J. & Fraser, H.L. (1984). The complementary use of atom probe field ion microscopy and analytical transmission electron microscopy for the study of a Ni-base superalloy. J Phys. C9, 45 (Suppl. 12), 373378.CrossRefGoogle Scholar
Miller, M.K. (2001). Contributions of atom-probe tomography to the understanding of nickel-based superalloys. Micron 32, 757764.CrossRefGoogle Scholar
Miller, M.K., Anderson, I.M., Pike, L.M. & Klarstrom, D.L. (2002b). Microstructural characterisation of Haynes Z 242 alloy. Mater Sci Eng A 327, 8993.Google Scholar
Miller, M.K. & Babu, S.S. (2000). Phase compositions in alloy 718: A comparison between APT/APFIM measurements and thermodynamic predictions. In Advanced Technologies for Superalloy Affordability, Proceedings of the 129th TMS Annual Meeting, TMS2000, Chang, K.M., Srvastavu, S.K., Furrer, D.U. & Bain, K.R. (Eds.), p. 63. Warrendale, PA: TMS.
Miller, M.K. & Babu, S.S. (2001). Atomic level characterization of precipitation in alloy 718. In Proceedings of the Fifth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Various Derivatives. Loria, E.A. (Ed.), pp. 357365. Warrendale, PA: TMS.CrossRef
Miller, M.K., Babu, S.S. & Burke, G. (2002a). Comparison of the phase compositions in Alloy 718 measured by atom probe tomography and predicted by thermodynamic calculations. Mater Sci Eng A 327, 8488.Google Scholar
Miller, M.K., Babu, S.S. & Vitek, J.M. (2007). Stability of γ′ precipitates in a PWA 1480 alloy. Intermetallics (in press).CrossRefGoogle Scholar
Miller, M.K. & Burke, M.G. (1991). Atom probe analysis of the compositions of γ′ and γ″ intermetallic phases in nickel-based superalloy 718. Mater Res Soc Symp Proc 186, 223228.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996a). Atom probe field ion microscopy. Oxford Science Publications, Monographs on the Physics and Chemistry of Materials, vol. 52, pp. 400402. Oxford: Clarendon Press.
Miller, M.K. & Horton, J.A. (1986). An atom probe field ion microscope study of boron decorated boundaries in Ni3Al. Scripta Metall 20, 789792.CrossRefGoogle Scholar
Miller, M.K., Horton, J.A., Cao, W.D. & Kennedy, R.L. (1996b). Characterization of the effects of boron and phosphorus additions to the nickel-based superalloy 718. J Phys IV, C5, Supp. Phys III 6, 241246.Google Scholar
Miller, M.K., Jayaram, R., Lin, L.S. & Cetel, A.D. (1994). APFIM characterization of single-crystal PWA 1480 nickel-base superalloy. Appl Surf Sci 76/77, 172176.CrossRefGoogle Scholar
Miller, M.K. & Reed, R.C. (2005). Analysis of rhenium clustering in CMSX-4 nickel-based superalloys. In Solid-Solid Phase Transformations in Inorganic Materials 2005, Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U. & Soffa, W.A. (Eds.), pp. 537542. Warrendale, PA: TMS.
Miller, M.K., Vitek, J.M. & David, S.A. (2001). Characterisation of the microstructure evolution in a nickel base superalloy during continuous cooling. Acta Mater 49, 41494160.Google Scholar
More, K.L. & Miller, M.K. (1988). Microstructural characterization of Udimet 720: A nickel-base alloy. J. de Phys C6 49 ( Suppl. 11), 391396.CrossRefGoogle Scholar
Müller, E.W., Panitz, J. & McLane, S.B. (1968). The atom probe field ion microscope. Rev Sci Instrum 39, 8388.CrossRefGoogle Scholar
Murakami, H., Harada, H. & Bhadeshia, H.K.D.H. (1994). The location of atoms in Re- and V-containing multicomponent nickel-base single-crystal superalloys. Appl Surf Sci 76/77, 177183.CrossRefGoogle Scholar
Murakami, H., Koizumi, Y., Yokokawa, T., Yamabe-Mitarai, Y., Yamagata, T. & Harada, H. (1998). Atom probe microanalysis of IR-bearing Ni-based alloys. Mater Sci Eng A 250, 109114.CrossRefGoogle Scholar
Panitz, J.A. (1973). The 10 cm atom probe. Rev Sci Instrum 44, 10341039.CrossRefGoogle Scholar
Pareige, C., Soisson, F., Martin, G. & Blavette, D. (1999). Ordering and phase separation in NiCrAl: Monte Carlo simulation vs three dimensional atom-probe. Acta Mater 47, 18891899.CrossRefGoogle Scholar
Ralph, B., Hill, S.A., Southon, M.J., Thomas, M.P. & Waugh, A.R. (1982). The investigation of engineering materials using, atom-probe techniques. Ultramicroscopy 8, 361376.CrossRefGoogle Scholar
Ratke, L. & Voorhees, P.W. (2002). Growth and Coarsening. Berlin: Springer Verlag.CrossRef
Reed, R.C., Yeh, A.C., Tin, S., Babu, S.S. & Miller, M.K. (2004). Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scripta Mater 51, 327331.CrossRefGoogle Scholar
Ren, R.G. (1998). Atom-probe and field ion microscope investigation of the negative creep mechanism in nickel base superalloy. J Mater Process Technol 73, 7477.CrossRefGoogle Scholar
Rüsing, J., Wanderka, N., Czubayko, U., Naundorf, V., Mukherji, D. & Rösler, J. (2002). Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy. Scripta Mater 46, 235.CrossRefGoogle Scholar
Schmuck, C., Caron, P., Hauet, A. & Blavette, D. (1997). Ordering and precipitation in low supersaturated NiCrAl model alloy: An atomic scale investigation. Phil Mag A 76, 527542.CrossRefGoogle Scholar
Seidman, D.N., Sudbrack, C.K. & Yoon, K.E. (2006). The use of 3-D atom-probe tomography to study nickel-based superalloys. JOM 58, 3439.CrossRefGoogle Scholar
Smith, G.D.W., Garratt-Reed, A.J. & Vander Sande, J.B. (1981). Comparison between atom probe and STEM microanalysis. In Proceedings of the Conference on Quantitative Microanalysis with High Spatial Resolution, Manchester, UK, Lorimer, G.W., Jacobs, M.H. & Doig, P. (Eds.), pp. 235249. London: The Metal Society.
Soisson, F., Schmuck-Pareige, C., Athènes, M., Martin, G. & Blavette, D. (1997). Kinetics of phase transformation in metallic alloys: Monte Carlo simulations versus experiments. Ann de Phys C2, 22, 310.Google Scholar
Stiller, K. (1989). Grain boundary chemistry in nickel base alloy 600. J Phys C8 50 ( Suppl. 11), 329334.CrossRefGoogle Scholar
Sudbrack, C.K., Isheim, D., Noebe, R.D., Jacobson, N.S. & Seidman, D.N. (2004a). The influence of tungsten on the chemical composition of temporal evolution of the nanostructure of a model Ni-Al-Cr superalloy. Microsc Microanal 355, 355365.Google Scholar
Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2005). Temporal evolution of sub-nanometer compositional profiles across the γ/γ′ interface in a model Ni-Al-Cr superalloy. In Solid-Solid Phase Transformations in Inorganic Materials 2005, Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U. & Soffa, W.A. (Eds.), pp. 543548. Warrendale, PA: TMS.
Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2006a). Direct observations of nucleation in a non dilute multi component alloy. Phys Rev B 73, 212101.Google Scholar
Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2007). Compositional pathways and capillarity effects during early stage isothermal precipitation in a non-dilute Ni-Cr-Al alloy. Acta Mater 55, 119130.CrossRefGoogle Scholar
Sudbrack, C.K., Yoon, K.E., Mao, Z., Noebe, R.D., Isheim, D. & Seidman, D.N. (2003). Temporal evolution of nanostructures in a model nickel-base superalloy: Experiments and simulations. In Electron Microscopy: Its Role in Material Science, Weertman, J.R., Fine, M., Liiaw, P., Quesnell, D. & King, W. (Eds.), pp. 4351. London: The Metals Society.
Sudbrack, C.K., Yoon, K.E., Noebe, R.D. & Seidman, D.N. (2004b). Temporal evolution of the nanostructure of a model Ni-Al-Cr alloy. TMS Lett 1(2), 2526.Google Scholar
Sudbrack, C.K., Yoon, K.E., Noebe, R.D. & Seidman, D.N. (2006b). Temporal evolution of the nanostructure and phase compositions in a model Ni-Cr-Al alloy. Acta Mater 54, 31993210.Google Scholar
Thomson, R.C. & Miller, M.K. (2000). Atom probe characterisation of high temperature materials. Mater Sci Technol 16, 1199.CrossRefGoogle Scholar
Thomson, R.C., Russel, K.F. & Miller, M.K. (1996). An atom probe field ion microscope study of model Ni-Al superalloys containing Be. J Phys IV, C5, Supp Phys III 6, 259264.CrossRefGoogle Scholar
Thomson, R.C., Russel, K.F. & Miller, M.K. (1998). Phase separation in a Ni-37% Co-5% Nb alloy. Mater Sci Eng A 250, 104108.CrossRefGoogle Scholar
Thuvander, M. & Stiller, K. (1998). Evolution of grain boundary in a Ni-17% Cr-9% Fe model alloy. Mater Sci Eng A 250, 9398.CrossRefGoogle Scholar
Thuvander, M., Stiller, K. & Olsson, E. (1999). Influence of heat treatment on grain boundary microstructure in a Ni-16Cr-10Fe-0.022C model material. Mater Sci Technol 15, 237245.Google Scholar
Tin, S., Zhang, L., Brewster, G. & Miller, M.K. (2006). Investigation of oxidation characteristics and atomic partitioning in platinum and ruthenium bearing single crystal Ni-based superalloys. Metall Trans A 37, 13891396.CrossRefGoogle Scholar
Van Bakel, G.P.E.M., Hariharan, K. & Seidman, D.N. (1995). On the structure and chemistry of Ni3Al on an atomic scale via atom-probe field-ion microscopy. Appl Surf Sci 90, 95105.CrossRefGoogle Scholar
Vurpillot, F., Renaud, L. & Blavette, D. (2003). A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95, 223229.CrossRefGoogle Scholar
Wagner, C. (1961). Theorie der altering von niederschlagën durch umlösen (Ostwald-Reifung). Z elektrochemie 65, 581591.Google Scholar
Wanderka, N. & Glatzel, U. (1995). Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy. Mater Sci Eng A 203, 69.CrossRefGoogle Scholar
Wanderka, N., Schumacher, G., Czubayko, U., Naundorf, V., Schneider, R. & Neumann, W. (2003). Local chemical and structural gradients in the creep deformed superalloy SC16. Mater Sci Eng A 353, 146.CrossRefGoogle Scholar
Warren, P.J., Cerezo, A. & Smith, G.D.W. (1998). An atom probe study of the distribution of Re in a nickel base superalloy. Mater Sci Eng A 250, 8892.CrossRefGoogle Scholar
Wendt, H. & Haasen, P. (1983). Nucleation and Growth of γ′ precipitates in Ni-14 at.% Al. Acta Metall 31, 16491659.CrossRefGoogle Scholar
Yoon, K.E., Isheim, D., Noebe, R.D. & Seidman, D.N. (2002). Nanoscale studies of the chemistry of a René N6 superalloy. Interface Sci 9, 249255.Google Scholar
Yoon, E., Noebe, R.D. & Seidman, D.N. (2004). The role of Re on the temporal evolution of the nanostructure of a model Ni-Cr-Al-Re superalloy. TMS Lett 1(2), 2728.Google Scholar
Yoon, K.E., Noebe, R.D. & Seidman, D.N. (2007a). Effects of a rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy I. Experimental Observations. Acta Mater 55, 11461157.Google Scholar
Yoon, K.E., Noebe, R.D. & Seidman, D.N. (2007b). Effects of a rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy II. Analysis of the coarsening behavior. Acta Mater 55, 11591169.Google Scholar
Yoon, E., Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2005). The temporal evolution of the nanostructures of model Ni-Al-Cr and Ni-Al-Cr-Re superalloys. Zeitschrift-fur-Metallkunde 96, 481485.CrossRefGoogle Scholar
Zapolsky, H., Pareige, C., Marteau, L., Blavette, D. & Chen, L.Q. (2001). Atom probe analyses and numerical calculation of ternary phase diagram in Ni-Al-V. Calphad 25, 125134.CrossRefGoogle Scholar
Zhang, Y., Wanderka, N., Schumacher, G., Seider, R. & Neumann, W. (2000). Phase chemistry of the superalloy SC16 after creep deformation. Acta Mater 48, 2787.CrossRefGoogle Scholar

Blavette et al

Figure 16. Intergranular Segregation of Boron in Nickel base Superalloy

Download Blavette et al(Video)
Video 3.8 MB