Article contents
Periodic Cation Segregation in Cs0.44[Nb2.54W2.46O14] Quantified by High-Resolution Scanning Transmission Electron Microscopy
Published online by Cambridge University Press: 01 July 2014
Abstract
The atomic structure of Cs0.44[Nb2.54W2.46O14] closely resembles the structure of the most active catalyst for the synthesis of acrylic acid, the M1 phase of ${\rm Mo}_{{{\rm 10}}} {\rm V}_{{\rm 2}}^{{{\rm 4{\plus}}}} {\rm Nb}_{2} {\rm TeO}_{{{\rm 42}{\minus}x}} $ . Consistently with observations made for the latter compound, the high-angle electron scattering signal recorded by scanning transmission electron microscopy shows a significant intensity variation, which repeats periodically with the projected crystallographic unit cell. The occupation factors for the individual mixed Nb/W atomic columns are extracted from the observed intensity variations. For this purpose, experimental images and simulated images are compared on an identical intensity scale, which enables a quantification of the cation distribution. According to our analysis specific sites possess low tungsten concentrations of 25%, whereas other sites have tungsten concentrations above 70%. These findings allow us to refine the existing structure model of the target compound, which has until now described a uniform distribution of the niobium and tungsten atoms in the unit cell, showing that the similarity between Cs0.44[Nb2.54W2.46O14] and the related catalytic compounds also extends to the level of the cation segregation.
- Type
- Materials Applications
- Information
- Copyright
- © Microscopy Society of America 2014
Footnotes
Dedicated to the memory of Dr. Gerhard Cox, who passed away on February 17, 2014.
References
- 4
- Cited by