Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:22:58.692Z Has data issue: false hasContentIssue false

Pattern Recognition in High-Resolution Electron Microscopy of Complex Materials

Published online by Cambridge University Press:  11 October 2006

Tore Niermann
Affiliation:
Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Karsten Thiel
Affiliation:
Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany Sonderforschungsbereich 602, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Michael Seibt
Affiliation:
Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany Sonderforschungsbereich 602, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Get access

Abstract

Structural features like defects or heterointerfaces in crystals or amorphous phases give rise to different local patterns in high-resolution electron micrographs or object wave functions. Pattern recognition techniques can be used to identify these typical patterns that constitute the image itself, as was already demonstrated for compositional changes in isostructural heterostructures, where the patterns within unit cells of the lattice were analyzed. To extend such analyses to more complex materials, we examined patterns in small circular areas centered on intensity maxima of the image. Nonsupervised clustering, namely, Ward's clustering method, was applied to these patterns. In two examples, a highly defective ZnMnTe layer on GaAs and a tunnel magneto resistance device, we demonstrate how typical patterns are identified by this method and how these results can be used for a further investigation of the microstructural properties of the sample.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aebersold, J.F., Stadelmann, P.A., & Rouvière, J.-L. (1996). Quantitative interpretation of HRTEM images using multivariate statistics: The case of the (γ,γ′)-interface in a Ni base superalloy. Ultramicroscopy 62, 171189.Google Scholar
Bierwolf, R., Hohenstein, M., Phillipp, F., Brandt, O., Crook, G.E., & Ploog, K. (1993). Direct measurement of local lattice distortions in strained layer structures by HREM. Ultramicroscopy 49, 273285.Google Scholar
Bonnet, N. (1998). Multivariate statistical methods for the analysis of microscope image series: Applications in materials science. J Microsc 190, 218.Google Scholar
Cowley, J.M. (1992). Twenty forms of electron holography. Ultramicroscopy 41, 335348.Google Scholar
Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., & Krivanek, O.L. (1985). Surface roughness at the Si(100)-SiO2 interface. Phys Rev B 32, 81718186.Google Scholar
Jain, A.K. & Dubes, R.C. (1988). Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice Hall.
Käufler, A., Luo, Y., Samwer, K., Gieres, G., Vieth, M., & Wecker, J. (2002). Tunnel-magnetoresistance system with an amorphous detection layer. J Appl Phys 91, 17011703.Google Scholar
Kisielowski, C., Schwander, P., Baumann, F.H., Seibt, M., Kim, Y., & Ourmazd, A. (1995). An approach to quantitative high-resolution transmission electron microscopy of crystalline materials. Ultramicroscopy 58, 131155.Google Scholar
Kret, S., Ruterana, P., Rosenauer, A., & Gerthsen, D. (2001). Extracting quantitative information from high resolution electron microscopy. Phys Stat Sol B 227, 247295.Google Scholar
Luo, Y., Esseling, M., Käufler, A., Samwer, K., Dimopoulos, T., Gieres, G., Vieth, M., Rührig, M., Wecker, J., Rudolf, C., Niermann, T., & Seibt, M. (2005). Co-rich magnetic amorphous films and their application in magnetoelectronics. Phys Rev B 72, 14426.Google Scholar
Ourmazd, A., Baumann, F.H., Bode, M., & Kim, Y. (1990). Quantitative chemical lattice imaging: Theory and practice. Ultramicroscopy 34, 237255.Google Scholar
Ourmazd, A., Taylor, D.W., Cunningham, J., & Tu, C.W. (1989). Chemical mapping of semiconductor interfaces at near-atomic resolution. Phys Rev Lett 62, 933936.Google Scholar
Rosenauer, A., Fischer, U., Gerthsen, D., & Förster, A. (1998). Composition evaluation by lattice fringe analysis. Ultramicroscopy 72, 121133.Google Scholar
Schwander, P., Kisielowski, C., Seibt, M., Baumann, F.H., Kim, Y., & Ourmazd, A. (1993). Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy. Phys Rev Lett 71, 41504153.Google Scholar
Seitz, H., Ahlborn, K., Seibt, M., & Schröter, W. (1998). Sensitivity limits of strain mapping procedures using high-resolution electron microscopy. J Microsc 190, 184189.Google Scholar
Seitz, H., Seibt, M., Baumann, F.H., Ahlborn, K., & Schröter, W. (1995). Quantitative strain mapping using high-resolution electron microscopy. Phys Stat Sol A 150, 625634.Google Scholar
Walter, T., Rosenauer, A., Wittmann, R., Gerthsen, D., Fischer, F., Gerhard, T., Waag, A., Landwehr, G., Schunk, P., & Schimmel, T. (1999). Structural properties of BeTe/ZnSe superlattices. Phys Rev B 59, 81148122.Google Scholar
Zozime, A., Seibt, M., Ertel, J., Trumson-Carli, A., Druilhe, R., Grattepain, C., & Triboulet, R. (2003). Influence of a ZnMnTe buffer layer on the growth of ZnTe on (001) GaAs by MOVPE. J Cryst Growth 249, 1522.Google Scholar