Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T00:52:45.845Z Has data issue: false hasContentIssue false

Optical Gap Measurements on Individual Boron Nitride Nanotubes by Electron Energy Loss Spectroscopy

Published online by Cambridge University Press:  16 May 2008

Raul Arenal*
Affiliation:
Laboratoire d'Etude des Microstructures, ONERA-CNRS UMR 104, 92322 Châtillon, France
Odile Stéphan
Affiliation:
Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France
Mathieu Kociak
Affiliation:
Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France
Dario Taverna
Affiliation:
Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France Université Paris VI, Paris, France
Annick Loiseau
Affiliation:
Laboratoire d'Etude des Microstructures, ONERA-CNRS UMR 104, 92322 Châtillon, France
Christian Colliex
Affiliation:
Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Electromagnetic response of individual boron nitride nanotubes (BNNTs) has been studied by spatially resolved electron energy loss spectroscopy (EELS). We demonstrate how dedicated EELS methods using subnanometer electron probes permit the analysis of local dielectric properties of a material on a nanometer scale. The continuum dielectric model has been used to analyze the low-loss EEL spectra recorded from these tubes. Using this model, we demonstrate the weak influence of the out-of-plane contribution to the dielectric response of BNNTs. The optical gap, which can be deduced from the measurements, is found to be equal to 5.8 ± 0.2 eV, which is close to that of the hexagonal boron nitride. This value is found to be independent of the nanotubes configuration (diameter, helicity, number of walls, and interaction between the different walls).

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arenal, R. (2005). Synthese de nanotubes de nitrure de bore: études de la structure et des proprietes vibrationnelles et electroniques. PhD thesis, Universit Paris XI, Orsay, France.Google Scholar
Arenal, R., Ferrari, A., Reich, S., Wirtz, L., Mevellec, J.-Y., Lefrant, S., Rubio, A. & Loiseau, A. (2006a). Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett 6, 18121816.CrossRefGoogle ScholarPubMed
Arenal, R., Kociak, M., Loiseau, A. & Miller, D. (2006b). Determination of chiral indices of individual single- and double-walled boron nitride nanotubes by electron diffraction. Appl Phys Lett 89, 073104-(3).CrossRefGoogle Scholar
Arenal, R., Kociak, M. & Zaluzec, N. (2007a). High-angular-resolution electron energy loss spectroscopy of hexagonal boron nitride. Appl Phys Lett 90, 204105-(3).CrossRefGoogle Scholar
Arenal, R., Stéphan, O., Cochon, J. & Loiseau, A. (2007b). Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J Am Chem Soc 129, 1618316189.CrossRefGoogle ScholarPubMed
Arenal, R., Stéphan, O., Kociak, M., Taverna, D., Colliex, C., Rubio, A. & Loiseau, A. (2004). EELS measurements in single wall boron nitride nanotubes. AIP Conf 723, 293297.CrossRefGoogle Scholar
Arenal, R., Stéphan, O., Kociak, M., Taverna, D., Loiseau, A. & Colliex, C. (2005). Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys Rev Lett 95, 127601-(4).CrossRefGoogle ScholarPubMed
Arenal, R., Stéphan, O., Loiseau, A. & Colliex, C. (2007c). Nanoscale bond mapping in complex nanostructures using EELS. Microsc Microanal 13 (2yes), 1240.CrossRefGoogle Scholar
Arnaud, B., Lebegue, S., Rabiller, P. & Alouani, M. (2006). Huge excitonic effects in layered hexagonal boron nitride. Phys Rev Lett 96, 026402-(4).CrossRefGoogle ScholarPubMed
Blase, X., Rubio, A., Louie, S. & Cohen, M. (1994). Stability and band gap constancy of bn nanotubes. Europhys Lett 28, 335340.CrossRefGoogle Scholar
Cao, G. (2004). Nanostructures and Nanomaterials: Synthesis, Properties and Applications. London: Imperial College Press.CrossRefGoogle Scholar
Cohen, H., Maniv, T., Tenne, R., Hacohen, Y.R., Stéphan, O. & Colliex, C. (1998). Near-field electron energy los spectroscopy of nanoparticles. Phys Rev Lett 80, 782785.CrossRefGoogle Scholar
Daniels, J., Festemberg, C. & Raether, H. (1970). Optical Constants of Solids by Electron Spectroscopy. New York: Springer-Verlag.CrossRefGoogle Scholar
Dresselhaus, M., Dresselhaus, G. & Avouris, P. (2001). Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Echenique, P., Howie, A. & Wheatley, D. (1987). Excitation of dielectric spheres by external electron beams. Philos Mag B 56, 335349.CrossRefGoogle Scholar
Egerton, R. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum.CrossRefGoogle Scholar
Ferell, T. & Echenique, P. (1985). Generation of surface excitations on dielectric spheres by an external electron beam. Phys Rev Lett 55, 15261529.CrossRefGoogle Scholar
Fox, A. (2002). Optical Properties of Solids. Oxford: Oxford Universitary Press.Google Scholar
Gloter, A., Douiri, A., Tence, M. & Colliex, C. (2002). Improving energy resolution of EELS spectra: An alternative to the monochromator solution. Ultramicroscopy 96, 385400.CrossRefGoogle Scholar
Henrard, L., Malengreau, F., Rudolf, P., Hevesi, K., Caudano, R., Lambin, P. & Cabioch, T. (1999). Electron-energy-loss spectroscopy of plasmon excitations in concentric-shell fullerenes. Phys Rev B 59, 58325836.CrossRefGoogle Scholar
Howie, A. & Milne, R. (1985). Excitations at interfaces and small particles. Ultramicroscopy 18, 427434.CrossRefGoogle Scholar
Jaffrennou, P., Donatini, F., Barjon, J., Lauret, J.-S., Attal-Tretout, B., Mariette, H., Ducastelle, F. & Loiseau, A. (2007). Cathodoluminescence imaging and spectroscopy on a single multiwall boron nitride nanotube. Chem Phys Lett 442, 372375.CrossRefGoogle Scholar
Jeanguillaume, C. & Colliex, C. (1989). Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252257.CrossRefGoogle Scholar
Kimoto, K., Kothleitner, G., Grogger, W., Matsui, Y. & HOFER, F. (2005). Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy. Micron 36, 185189.CrossRefGoogle ScholarPubMed
Kociak, M., Stephan, O., Henrard, L., Charbois, V., Rothschild, A., Tenne, R. & Colliex, C. (2001). Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys Rev Lett 87, 075501-(4).CrossRefGoogle ScholarPubMed
Lazar, S., Botton, G. & Zandbergen, H. (2006). Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope. Ultramicroscopy 106, 10911103.CrossRefGoogle Scholar
Lee, R., Gavillet, J., Chapelle, M.L.D.L., Loiseau, A., Cochon, J.-L., Pigache, D., Thibault, J. & Willaime, F. (2001). Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration. Phys Rev B 64, 121405(R)-(4).CrossRefGoogle Scholar
Lucas, A., Henrard, L. & Lambin, P. (1994). Computation of the ultraviolet absorption and electron inelastic scattering cross section of multishell fullerenes. Phys Rev B 49, 28882896.CrossRefGoogle ScholarPubMed
Mook, H. & Kruit, P. (2000). Construction and characterization of the fringe field monochromator for a field emission gun. Ultramicroscopy 81, 129139.CrossRefGoogle ScholarPubMed
Rose, H. (1994). Correction of aberrations: A promising means for improving the spatial and energy resolution of energy-filtering electron microscopes. Ultramicroscopy 56, 1125.CrossRefGoogle Scholar
Silly, M., Jaffrennou, P., Barjon, J., Lauret, J.-S., Ducastelle, F., Loiseau, A., Obraztsova, E., Attal-Tretout, B. & Rosencher, E. (2007). Luminescence properties of hexagonal boron nitride: Cathodoluminescence and photoluminescence spectroscopy measurements. Phys Rev B 75, 085205-(5).CrossRefGoogle Scholar
Stéphan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P. & Lefin, P. (1994). Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 16831685.CrossRefGoogle ScholarPubMed
Stéphan, O., Kociak, M., Taverna, D., Suenaga, K., Henrard, L. & Colliex, C. (2002). Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: From multiwalled to single-walled nanotubes. Phys Rev B 66, 155422-(6).CrossRefGoogle Scholar
Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H. & Willaime, F. (1997). Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653655.CrossRefGoogle Scholar
Suenaga, K., Tence, M., Mory, C., Colliex, C., Kato, H., Shinohara, H., Hirahara, K., Bandow, S. & Iijima, S. (2000). Element-selective single atom imaging. Science 290, 22802282.CrossRefGoogle ScholarPubMed
Tarrio, C. & Schnatterly, S. (1989). Interband transitions, plasmons, and dispersion in hexagonal boron nitride. Phys. Rev. B 40, 78527859.CrossRefGoogle ScholarPubMed
Taverna, D., Kociak, M., Charbois, V. & Henrard, L. (2002). Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Phys Rev B 66, 235419-(10).CrossRefGoogle Scholar
Terauchi, M., Tanaka, M., Matsumoto, T. & Saito, Y. (1998). Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes. J Electron Microsc 47, 319324.CrossRefGoogle Scholar
Vilanove, R. (1971). Détermination des constantes diélectriques du h-BN, dans l'uv, par spectroscopie électronique. Compte Rendues Acad Sci Paris 272, 1066.Google Scholar
Watanabe, K., Taniguchi, T. & Kanda, H. (2004). Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials 3, 404409.CrossRefGoogle ScholarPubMed
Wirtz, L., Marini, A., Gruning, M. & Rubio, A. (2005). Excitonic effects in optical absorption and electron-energy loss spectra of hexagonal boron nitride. Cond-Mat 0508421.Google Scholar
Wirtz, L., Marini, A. & Rubio, A. (2006). Excitons in boron nitride nanotubes: Dimensionality effects. Phys Rev Lett 96, 126104-(4).CrossRefGoogle ScholarPubMed
Zhang, Y., Suenaga, K., Colliex, C. & Iijima, S. (1998). Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973975.CrossRefGoogle ScholarPubMed