Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T18:59:02.015Z Has data issue: false hasContentIssue false

Nonlinear Optical Imaging of Cellular Processes in Breast Cancer

Published online by Cambridge University Press:  06 November 2008

Paolo P. Provenzano
Affiliation:
Department of Pharmacology, University of Wisconsin, Madison, WI 53706 Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706 University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
Kevin W. Eliceiri*
Affiliation:
Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
Long Yan
Affiliation:
Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
Aude Ada-Nguema
Affiliation:
Department of Pharmacology, University of Wisconsin, Madison, WI 53706
Matthew W. Conklin
Affiliation:
Department of Pharmacology, University of Wisconsin, Madison, WI 53706 Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706 University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
David R. Inman
Affiliation:
Department of Pharmacology, University of Wisconsin, Madison, WI 53706 University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
Patricia J. Keely
Affiliation:
Department of Pharmacology, University of Wisconsin, Madison, WI 53706 Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706 University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Nonlinear optical imaging techniques such as multiphoton and second harmonic generation (SHG) microscopy used in conjunction with novel signal analysis techniques such as spectroscopic and fluorescence excited state lifetime detection have begun to be used widely for biological studies. This is largely due to their promise to noninvasively monitor the intracellular processes of a cell together with the cell's interaction with its microenvironment. Compared to other optical methods these modalities provide superior depth penetration and viability and have the additional advantage in that they are compatible technologies that can be applied simultaneously. Therefore, application of these nonlinear optical approaches to the study of breast cancer holds particular promise as these techniques can be used to image exogeneous fluorophores such as green fluorescent protein as well as intrinsic signals such as SHG from collagen and endogenous fluorescence from nicotinamide adenine dinucleotide or flavin adenine dinucleotide. In this article the application of multiphoton excitation, SHG, and fluorescence lifetime imaging microscopy to relevant issues regarding the tumor-stromal interaction, cellular metabolism, and cell signaling in breast cancer is described. Furthermore, the ability to record and monitor the intrinsic fluorescence and SHG signals provides a unique tool for researchers to understand key events in cancer progression in its natural context.

Type
Multiphoton Microscopy–Special Section
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. (2004). Image processing with ImageJ. Biophoton Int 11(7), 3642.Google Scholar
Ada-Nguema, A.S., Xenias, H., Sheetz, M.P. & Keely, P.J. (2006). The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLC{epsilon}. J Cell Sci 119(Pt 7), 13071319.CrossRefGoogle Scholar
Becker, W., Bergmann, A., Hink, M.A., Konig, K., Benndorf, K. & Biskup, C. (2004). Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63(1), 5866.CrossRefGoogle ScholarPubMed
Bird, D. & Gu, M. (2002a). Fibre-optic two-photon scanning fluorescence microscopy. J Microsc 208(Pt 1), 3548.CrossRefGoogle ScholarPubMed
Bird, D. & Gu, M. (2002b). Resolution improvement in two-photon fluorescence microscopy with a single-mode fiber. Appl Opt 41(10), 18521857.CrossRefGoogle ScholarPubMed
Bird, D. & Gu, M. (2003). Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt Lett 28(17), 15521554.CrossRefGoogle ScholarPubMed
Bird, D.K., Eliceiri, K.W., Fan, C.H. & White, J.G. (2004). Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43(27), 51735182.CrossRefGoogle ScholarPubMed
Bird, D.K., Yan, L., Vrotsos, K.M., Eliceiri, K.W., Vaughan, E.M., Keely, P.J., White, J.G. & Ramanujam, N. (2005). Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65(19), 87668773.CrossRefGoogle ScholarPubMed
Boyd, N.F., Dite, G.S., Stone, J., Gunasekara, A., English, D.R., McCredie, M.R., Giles, G.G., Tritchler, D., Chiarelli, A., Yaffe, M.J. & Hopper, J.L. (2002). Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347(12), 886894.CrossRefGoogle ScholarPubMed
Boyd, N.F., Lockwood, G.A., Byng, J.W., Tritchler, D.L. & Yaffe, M.J. (1998). Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7(12), 11331144.Google ScholarPubMed
Boyd, N.F., Martin, L.J., Stone, J., Greenberg, C., Minkin, S. & Yaffe, M.J. (2001). Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention. Curr Oncol Rep 3(4), 314321.CrossRefGoogle ScholarPubMed
Brakenhoff, G.J., van der Voort, H.T., van Spronsen, E.A., Linnemans, W.A. & Nanninga, N. (1985). Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317(6039), 748749.CrossRefGoogle ScholarPubMed
Brown, E., McKee, T., diTomaso, E., Pluen, A., Seed, B., Boucher, Y. & Jain, R.K. (2003). Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9(6), 796800.CrossRefGoogle ScholarPubMed
Brown, E.B., Campbell, R.B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D. & Jain, R.K. (2001). In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7), 864868.CrossRefGoogle ScholarPubMed
Campagnola, P.J., Millard, A.C., Terasaki, M., Hoppe, P.E., Malone, C.J. & Mohler, W.A. (2002). Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82(1 Pt 1), 493508.CrossRefGoogle ScholarPubMed
Centonze, V.E. & White, J.G. (1998). Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75(4), 20152024.CrossRefGoogle ScholarPubMed
Condeelis, J., Singer, R.H. & Segall, J.E. (2005). The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21, 695718.CrossRefGoogle ScholarPubMed
Cox, G., Kable, E., Jones, A., Fraser, I., Manconi, F. & Gorrell, M.D. (2003). 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 141(1), 5362.CrossRefGoogle Scholar
Cremazy, F.G., Manders, E.M., Bastiaens, P.I., Kramer, G., Hager, G.L., van Munster, E.B., Verschure, P.J., Gadella, T.J. Jr. & van Driel, R. (2005). Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM. Exp Cell Res 309(2), 390396.CrossRefGoogle ScholarPubMed
DeMali, K.A. & Burridge, K. (2003). Coupling membrane protrusion and cell adhesion. J Cell Sci 116(12), 23892397.CrossRefGoogle ScholarPubMed
Denk, W., Strickler, J.H. & Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248(4951), 7376.CrossRefGoogle ScholarPubMed
Diaspro, A. & Sheppard, C.J.R. (2002). Two-photon excitation fluorescence microscopy. In Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, A. Diaspro (Ed.), pp. 3973. New York: Wiley-Liss, Inc.Google Scholar
Elenbaas, B., Spirio, L., Koerner, F., Fleming, M.D., Zimonjic, D.B., Donaher, J.L., Popescu, N.C., Hahn, W.C. & Weinberg, R.A. (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1), 5065.CrossRefGoogle ScholarPubMed
Eliceiri, K.W., Fan, C.H., Lyons, G.E. & White, J.G. (2003). Analysis of histology specimens using lifetime multiphoton microscopy. J Biomed Opt 8(3), 376380.CrossRefGoogle ScholarPubMed
Eliceiri, K.W. & Rueden, C. (2005). Tools for visualizing multidimensional images from living specimens. Photochem Photobiol 81(5), 11161122.CrossRefGoogle ScholarPubMed
Flusberg, B.A., Cocker, E.D., Piyawattanametha, W., Jung, J.C., Cheung, E.L. & Schnitzer, M.J. (2005). Fiber-optic fluorescence imaging. Nat Methods 2(12), 941950.CrossRefGoogle ScholarPubMed
French, T., So, P.T., Weaver, D.J. Jr., Coelho-Sampaio, T., Gratton, E., Voss, E.W. Jr. & Carrero, J. (1997). Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J Microsc 185 (Pt 3), 339353.CrossRefGoogle ScholarPubMed
Freund, I. & Deutsch, M. (1986). Second-harmonic microscopy of biological tissue. Opt Lett 11(2), 9496.CrossRefGoogle ScholarPubMed
Friedl, P., Hegerfeldt, Y. & Tusch, M. (2004). Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48(5–6), 441449.CrossRefGoogle ScholarPubMed
Friedl, P. & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer 3(5), 362374.CrossRefGoogle ScholarPubMed
Galeotti, T., van Rossum, G.D., Mayer, D.H. & Chance, B. (1970). On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues. Eur J Biochem 17(3), 485496.CrossRefGoogle ScholarPubMed
Goldberg, I.G., Allan, C., Burel, J.M., Creager, D., Falconi, A., Hochheiser, H., Johnston, J., Mellen, J., Sorger, P.K. & Swedlow, J.R. (2005). The Open Microscopy Environment (OME) Data Model and XML file: Open tools for informatics and quantitative analysis in biological imaging. Genome Biol 6(5), R47.CrossRefGoogle ScholarPubMed
Guo, Y.P., Martin, L.J., Hanna, W., Banerjee, D., Miller, N., Fishell, E., Khokha, R. & Boyd, N.F. (2001). Growth factors and stromal matrix proteins associated with mammographic densities. Canc Epid Biomark Prev 10(3), 243248.Google ScholarPubMed
Hagios, C., Lochter, A. & Bissell, M.J. (1998). Tissue architecture: The ultimate regulator of epithelial function? Philos Trans R Soc Lond B Biol Sci 353(1370), 857870.CrossRefGoogle ScholarPubMed
Hanahan, D. & Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100(1), 5770.CrossRefGoogle ScholarPubMed
Harpur, A.G., Wouters, F.S. & Bastiaens, P.I. (2001). Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 19(2), 167169.CrossRefGoogle ScholarPubMed
Hegerfeldt, Y., Tusch, M., Brocker, E.-B. & Friedl, P. (2002). Collective cell movement in primary melanoma explants: Plasticity of cell-cell interaction, {beta}1-integrin function, and migration strategies. Cancer Res 62(7), 21252130.Google Scholar
Helmchen, F. & Denk, W. (2002). New developments in multiphoton microscopy. Curr Opin Neurobiol 12(5), 593601.CrossRefGoogle ScholarPubMed
Huang, S., Heikal, A.A. & Webb, W.W. (2002). Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82(5), 28112825.CrossRefGoogle ScholarPubMed
Jacks, T. & Weinberg, R.A. (2002). Taking the study of cancer cell survival to a new dimension. Cell 111(7), 923925.CrossRefGoogle Scholar
Jaffe, A.B. & Hall, A. (2005). RHO GTPASES: Biochemistry and biology. Ann Rev Cell Dev Biol 21(1), 247269.CrossRefGoogle ScholarPubMed
Jain, R.K., Munn, L.L. & Fukumura, D. (2002). Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4), 266276.CrossRefGoogle ScholarPubMed
Jung, J.C. & Schnitzer, M.J. (2003). Multiphoton endoscopy. Opt Lett 28(11), 902904.CrossRefGoogle ScholarPubMed
Katz, A., Savage, H.E., Schantz, S.P., McCormick, S.A. & Alfano, R.R. (2002). Noninvasive native fluorescence imaging of head and neck tumors. Technol Cancer Res Treat 1(1), 915.CrossRefGoogle ScholarPubMed
Keely, P., Fong, A., Zutter, M. & Santoro, S. (1995). Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense a2 integrin mRNA in mammary cells. J Cell Sci 108, 595607.CrossRefGoogle Scholar
Keely, P.J., Rusyn, E.V., Cox, A.D. & Parise, L.V. (1999). R-Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. J Cell Biol 145(5), 10771088.CrossRefGoogle ScholarPubMed
Kirkpatrick, N.D., Zou, C., Brewer, M.A., Brands, W.R., Drezek, R.A. & Utzinger, U. (2005). Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring. Photochem Photobiol 81(1), 125134.CrossRefGoogle ScholarPubMed
Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., Berndt, K.W. & Johnson, M. (1992). Fluorescence lifetime imaging. Anal Biochem 202(2), 316330.CrossRefGoogle ScholarPubMed
Lee, K.C., Siegel, J., Webb, S.E., Leveque-Fort, S., Cole, M.J., Jones, R., Dowling, K., Lever, M.J. & French, P.M. (2001). Application of the stretched exponential function to fluorescence lifetime imaging. Biophys J 81(3), 12651274.CrossRefGoogle ScholarPubMed
Lin, E.Y., Jones, J.G., Li, P., Zhu, L., Whitney, K.D., Muller, W.J. & Pollard, J.W. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5), 21132126.CrossRefGoogle ScholarPubMed
Lippincott-Schwartz, J. & Patterson, G.H. (2003). Development and use of fluorescent protein markers in living cells. Science 300(5616), 8791.CrossRefGoogle ScholarPubMed
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. (2001). Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6), 444456.CrossRefGoogle ScholarPubMed
Marsh, P., Burns, D. & Girkin, J. (2003). Practical implementation of adaptive optics in multiphoton microscopy. Opt Exp 11, 11231130.CrossRefGoogle ScholarPubMed
Mohler, W., Millard, A.C. & Campagnola, P.J. (2003). Second harmonic generation imaging of endogenous structural proteins. Methods 29(1), 97109.CrossRefGoogle ScholarPubMed
Muti, P. (2004). The role of endogenous hormones in the etiology and prevention of breast cancer: The epidemiological evidence. Ann NY Acad Sci 1028, 273282.CrossRefGoogle ScholarPubMed
Nazir, M.Z. & Eliceiri, K.W. (2008). WiscScan: A Software Defined Laser-Scanning Microscope. Personal Communication.Google Scholar
Palmer, G.M., Keely, P.J., Breslin, T.M. & Ramanujam, N. (2003). Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 78(5), 462469.2.0.CO;2>CrossRefGoogle ScholarPubMed
Parsons, M., Monypenny, J., Ameer-Beg, S.M., Millard, T.H., Machesky, L.M., Peter, M., Keppler, M.D., Schiavo, G., Watson, R., Chernoff, J., Zicha, D., Vojnovic, B. & Ng, T. (2005). Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Mol Cell Biol 25(5), 16801695.CrossRefGoogle ScholarPubMed
Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A. & Weaver, V.M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3), 241254.CrossRefGoogle ScholarPubMed
Patterson, G.H., Knobel, S.M., Arkhammar, P., Thastrup, O. & Piston, D.W. (2000). Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci USA 97(10), 52035207.CrossRefGoogle ScholarPubMed
Peter, M. & Ameer-Beg, S.M. (2004). Imaging molecular interactions by multiphoton FLIM. Biol Cell 96(3), 231236.CrossRefGoogle ScholarPubMed
Peter, M., Ameer-Beg, S.M., Hughes, M.K., Keppler, M.D., Prag, S., Marsh, M., Vojnovic, B. & Ng, T. (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88(2), 12241237.CrossRefGoogle ScholarPubMed
Pitts, J.D., Sloboda, R.D., Dragnev, K.H., Dmitrovsky, E. & Mycek, M.A. (2001). Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells. J Biomed Opt 6(1), 3140.CrossRefGoogle ScholarPubMed
Plotnikov, S.V., Millard, A.C., Campagnola, P.J. & Mohler, W.A. (2006). Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 90(2), 693703.CrossRefGoogle ScholarPubMed
Poteryaev, D., Squirrell, J.M., Campbell, J.M., White, J.G. & Spang, A. (2005). Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in caenorhabditis elegans. Mol Biol Cell 16(5), 21392153.CrossRefGoogle ScholarPubMed
Pradhan, A., Pal, P., Durocher, G., Villeneuve, L., Balassy, A., Babai, F., Gaboury, L. & Blanchard, L. (1995). Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. J Photochem Photobiol B 31(3), 101112.CrossRefGoogle ScholarPubMed
Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., Inman, D.R., White, J.G. & Keely, P.J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1), 38.CrossRefGoogle ScholarPubMed
Ramanujam, N (2000). Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2(1–2), 89117.CrossRefGoogle ScholarPubMed
Rangarajan, A., Hong, S.J., Gifford, A. & Weinberg, R.A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2), 171183.CrossRefGoogle ScholarPubMed
Robu, V.G., Pfeiffer, E.S., Robia, S.L., Balijepalli, R.C., Pi, Y., Kamp, T.J. & Walker, J.W. (2003). Localization of functional endothelin receptor signaling complexes in cardiac transverse tubules. J Biol Chem 278(48), 4815448161.CrossRefGoogle ScholarPubMed
Ronnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. & Bissell, M.J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2), 859873.CrossRefGoogle ScholarPubMed
Rueden, C., Eliceiri, K.W. & White, J.G. (2004). VisBio: A computational tool for visualization of multidimensional biological image data. Traffic 5(6), 411417.CrossRefGoogle ScholarPubMed
Sahai, E., Wyckoff, J., Philippar, U., Segall, J.E., Gertler, F. & Condeelis, J. (2005). Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 5, 14.CrossRefGoogle ScholarPubMed
Sato, N., Maehara, N. & Goggins, M. (2004). Gene expression profiling of tumor-stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Res 64(19), 69506956.CrossRefGoogle ScholarPubMed
Shen, Y.R. (1989). Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(9), 519525.CrossRefGoogle Scholar
Skala, M.C., Squirrell, J.M., Vrotsos, K.M., Eickhoff, J.C., Gendron-Fitzpatrick, A., Eliceiri, K.W. & Ramanujam, N. (2005). Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65(4), 11801186.CrossRefGoogle ScholarPubMed
Squirrell, J.M., Eggers, Z.T., Luedke, N., Saari, B., Grimson, A., Lyons, G.E., Anderson, P. & White, J.G. (2006). CAR-1, a protein that localizes with the mRNA decapping component DCAP-1, is required for cytokinesis and ER organization in caenorhabditis elegans embryos. Mol Biol Cell 17(1), 336344.CrossRefGoogle ScholarPubMed
Squirrell, J.M., Wokosin, D.L., White, J.G. & Bavister, B.D. (1999). Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17(8), 763767.CrossRefGoogle ScholarPubMed
Stoller, P., Kim, B.M., Rubenchik, A.M., Reiser, K.M. & Da Silva, L.B. (2002). Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7(2), 205214.CrossRefGoogle ScholarPubMed
Strome, S., Powers, J., Dunn, M., Reese, K., Malone, C.J., White, J., Seydoux, G. & Saxton, W. (2001). Spindle dynamics and the role of {gamma}-tubulin in early caenorhabditis elegans embryos. Mol Biol Cell 12(6), 17511764.CrossRefGoogle ScholarPubMed
Tadrous, P.J., Siegel, J., French, P.M., Shousha, S., Lalani el, N. & Stamp, G.W. (2003). Fluorescence lifetime imaging of unstained tissues: Early results in human breast cancer. J Pathol 199(3), 309317.CrossRefGoogle ScholarPubMed
Tlsty, T.D. & Hein, P.W. (2001). Know thy neighbor: Stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 11(1), 5459.CrossRefGoogle ScholarPubMed
van Munster, E.B. & Gadella, T.W. (2005). Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95, 143175.Google ScholarPubMed
Verveer, P.J., Wouters, F.S., Reynolds, A.R. & Bastiaens, P.I. (2000). Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290(5496), 15671570.CrossRefGoogle ScholarPubMed
Wang, W., Goswami, S., Lapidus, K., Wells, A.L., Wyckoff, J.B., Sahai, E., Singer, R.H., Segall, J.E. & Condeelis, J.S. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64(23), 85858594.CrossRefGoogle ScholarPubMed
Wang, W., Goswami, S., Sahai, E., Wyckoff, J.B., Segall, J.E. & Condeelis, J.S. (2005). Tumor cells caught in the act of invading: Their strategy for enhanced cell motility. Trends Cell Biol 15(3), 138145.CrossRefGoogle ScholarPubMed
Wang, W., Wyckoff, J.B., Frohlich, V.C., Oleynikov, Y., Huttelmaier, S., Zavadil, J., Cermak, L., Bottinger, E.P., Singer, R.H., White, J.G., Segall, J.E. & Condeelis, J.S. (2002). Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62(21), 62786288.Google ScholarPubMed
West, R.B., Nuyten, D.S., Subramanian, S., Nielsen, T.O., Corless, C.L., Rubin, B.P., Montgomery, K., Zhu, S., Patel, R., Hernandez-Boussard, T., Goldblum, J.R., Brown, P.O., van de Vijver, M. & van de Rijn, M. (2005). Determination of stromal signatures in breast carcinoma. PLoS Biol 3(6), e187.CrossRefGoogle ScholarPubMed
White, J.G., Amos, W.B. & Fordham, M. (1987). An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105(1), 4148.CrossRefGoogle ScholarPubMed
Williams, R.M., Zipfel, W.R. & Webb, W.W. (2005). Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88(2), 13771386.CrossRefGoogle ScholarPubMed
Wokosin, D.L., Squirrell, J.M., Eliceiri, K.E. & White, J.G. (2003). An optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev Sci Instrum 74(1), 193201.CrossRefGoogle ScholarPubMed
Wozniak, M.A., Desai, R., Solski, P.A., Der, C.J. & Keely, P.J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3), 583595.CrossRefGoogle Scholar
Wozniak, M.A., Kwong, L., Chodniewicz, D., Klemke, R.L. & Keely, P.J. (2005). R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol Biol Cell 16(1), 8496.CrossRefGoogle ScholarPubMed
Yan, L., Rueden, C.T., White, J.G. & Eliceiri, K.W. (2006). Applications of combined spectral lifetime microscopy for biology. Biotechniques 41(3), 249, 251, 253passim.CrossRefGoogle ScholarPubMed
Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. (2002). Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12), 906918.CrossRefGoogle ScholarPubMed
Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T. & Webb, W.W. (2003a). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12), 70757080.CrossRefGoogle ScholarPubMed
Zipfel, W.R., Williams, R.M. & Webb, W.W. (2003b). Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotechnol 21(11), 13691377.CrossRefGoogle ScholarPubMed
Zoumi, A., Yeh, A. & Tromberg, B.J. (2002). Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17), 1101411019.CrossRefGoogle ScholarPubMed