Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:27:38.101Z Has data issue: false hasContentIssue false

A New Method for Morphometric Analysis of Opal Phytoliths from Plants

Published online by Cambridge University Press:  07 October 2014

Welmoed A. Out*
Affiliation:
Graduate School Human Development in Landscapes/Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität, Johanna-Mestorf-Strasse 2-6, Kiel 24118, Germany
José F. Pertusa Grau
Affiliation:
Department of Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain
Marco Madella
Affiliation:
CaSEs Research Group, ICREA – Department of Humanities, University Pompeu Fabra & IMF-CSIC, C/Trias Fargas 25–27, 08005 Barcelona, Spain
*
*Corresponding author. [email protected]
Get access

Abstract

Micro-morphometry has substantially gained ground in the field of phytolith analysis, but the comparability of results is limited due to the use of different methods. This paper presents a new, user-friendly method based on open-source software (FIJI) that is proposed as a step towards the introduction of a standard method. After obtaining a mask of a phytolith by making a digital drawing, 27 commonly used variables of size and shape are measured automatically. This method is not only useful for phytolith analysis, but may also be used for other fields of morphometric research. Users can furthermore customize the software tool when additional variables are required.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, R.M., Bamford, M.K. & Cabanes, D. (2009). Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quat Int 193, 4148.Google Scholar
Ball, T.B. & Brotherson, J.D. (1992). The effect of varying environmental conditons on phytolith morphometries in two species of grass (Bouteloua curtipendula and Panicum virgatum). Scanning Microsc Int 6(4), 11631181.Google Scholar
Ball, T.B., Ehlers, R. & Standing, M.D. (2009). Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breed Sci 59, 505512.CrossRefGoogle Scholar
Ball, T., Gardner, J.S. & Brotherson, J.D. (1996). Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analysis. J Archaeol Sci 23, 619632.Google Scholar
Ball, T.L. (1992). Note on preparing stained phytolith assemblages. The Phytolitharian Newsletter 7(2), 67.Google Scholar
Bretz, F., Hothorn, T. & Westfall, P. (2011). Multiple Comparisons using R. London: Chapman and Hall/CRC.Google Scholar
Brown, D.A. (1984). Prospects and limits of a phytolith key for grasses in the central United States. J Archaeol Sci 11, 345368.Google Scholar
Burns, R.P. & Burns, R. (2009). Business Research Methods and Statistics using SPSS. London: Sage.Google Scholar
Dayanandan, P., Kaufman, P.B. & Franklin, C.I. (1983). Detection of silica in plants. Am J Bot 70, 10791084.Google Scholar
Dougherty, B. (2005). Measure ROI curve. Version 1 2/26/2007 (2007). Update with using the new version of the Custom Particle Analyzer by G. Joss and W. Rasband. Available at http://www.optinav.com/Measure-Roi.htm (retrieved 1 March 2014).Google Scholar
Fuller, D., Stevens, C. & McClatchie, M. (2014). Routine activities, tertiary refuse and labor organization: social inference from everyday Archaeobotany. In Ancient Plants and People. Contemporary Trends in Archaeobotany, Madella, M., Lancelotti, C. & Savard, M. (Eds.). Tucson: University of Arizona Press.Google Scholar
Grubben, G.J.H. & Partohardjono, S. (1996). Plant Resources of South-East Asia. Volume 10: Cereals. Bogor: Prosea Foundation.Google Scholar
Gu, Y., Zhao, Z. & Pearsall, D.M. (2013). Phytolith morphology research on wild and domesticated rice species in East Asia. Quat Int 287, 141148.Google Scholar
IBM Corp. (2012). IBM SPSS Statistics for Windows, Version 21.0. Armonk, New York: IBM Corp.Google Scholar
Iriarte, J. (2003). Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. J Archaeol Sci 30, 10851094.Google Scholar
Laird, N.M. & Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics 38(4), 63974.Google Scholar
Landini, G. (2013). Particles_8. Version 2.12 14/Sep/2010. Available at http://www.dentistry.bham.ac.uk/landinig/software/software.html (retrieved 1 March 2014).Google Scholar
Lu, H. & Liu, K.-B. (2003). Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Divers Distrib 9, 7387.CrossRefGoogle Scholar
Lu, H., Zhang, J., Wu, N., Liu, K.-B. & Xu, D. (2009). Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4(2), e4448. doi: 10.1371/journal.pone.0004448.CrossRefGoogle ScholarPubMed
Madella, M., Lancelotti, C. & García-Granero, J.J. (2013). Millet microremains – an alternative approach to understand cultivation and use of critical crops in prehistory. Archaeol Anthropol Sci. doi: 10.1007/s12520-013-0130-y.CrossRefGoogle Scholar
Madella, M. & Zurro, D. (2009). Phytoliths. In Archaeobotanical Online Tutorial , Charles, M., Crowther, A., Ertug, F., Herbig, C., Jones, G., Kutterer, J., Longford, C., Madella, M., Maier, U., Out, W., Pessin, H. & Zurro, D. (Eds.). University of Sheffield. Available at http://archaeobotany.dept.shef.ac.uk/wiki/index.php/Main_Page (retrieved 1 March 2014).Google Scholar
Metcalfe, C.R. (1960). Anatomy of the Monocotyledons Gramineae. Oxford: Clarendon Press.Google Scholar
Mulholland, S.C. & Rapp, G.R. (1992). Phytolith systematics: an introduction. In Phytolith Systematics: Emerging Issues, Rapp, G.R. & Mullholland, S.C. (Eds.), pp. 113. New York: Plenum Press.Google Scholar
Pearsall, D.M. (1978). Phytolith analysis of archeological soils: evidence for maize cultivation in formative Ecuador. Science 199, 177178.Google Scholar
Piperno, D.R. (1984). A comparison and differentiation of phytoliths from maize (Zea mays L.) and wild grasses: use of morphological criteria. Am Antiq 49, 361383.Google Scholar
Piperno, D.R. (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham: AltaMira Press.Google Scholar
Piperno, D.R. (2009). Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat Int 193, 146159.CrossRefGoogle Scholar
Powers, A.H. (1992). Great expectations: a short historical review of european phytolith systematic. In Phytolith Systematics: Emerging Issues, Rapp, G.R. & Mullholland, S.C. (Eds.), pp. 1535. New York: Plenum Press.Google Scholar
R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/ (retrieved 1 March 2014).Google Scholar
Rasband, W.S. (1997–2012). ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ (retrieved 1 March 2014).Google Scholar
Rovner, I. & Russ, J.C. (1992). Darwin and design in phytolith systematics: morphometric methods for mitigating redundancy. In Phytolith Systematics: Emerging Issues, Rapp, G.R. & Mullholland, S.C. (Eds.), pp. 253276. New York: Plenum Press.Google Scholar
Schaarschmidt, F. & Vaas, L. (2009). Analysis of trials with complex treatment structure using multiple contrast tests. HortScience 44(1), 188195.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., James White, D., Hartenstein, V., Eliceiri, V., Tomancak, P. & Cardona, A. (2012). Fiji: an open-source platform for biological image-analysis. Nat Methods 9(7), 676682.Google Scholar
Shillito, L.-M. (2013). Grains of truth or transparent blindfolds? A review of current debates in archaeological phytolith analysis. Veg Hist Archaeobot 22(1), 7182.Google Scholar
Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.Google Scholar
Zhao, Z., Pearsall, D.M., Benfer, R.A. Jr. & Piperno, R. (1998). Distinguishing rice (Oryza sativa Poaceae) from wild oryza species through phytolith analysis, II: finalized method. Econ Bot 52(2), 134145.Google Scholar
Zohary, D., Hopf, M. & Weiss, E. (2012). Domestication of Plants in the Old World. Oxford: Oxford University Press.CrossRefGoogle Scholar
File 75.9 KB
Supplementary material: File

Out Supplementary Material

Supplementary Material 2

Download Out Supplementary Material(File)
File 66.5 KB
Supplementary material: File

Out Supplementary Material

Supplementary Material 3

Download Out Supplementary Material(File)
File 104.3 KB
Supplementary material: File

Out Supplementary Material

Supplementary Material 4

Download Out Supplementary Material(File)
File 26.1 KB