Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T02:31:05.792Z Has data issue: false hasContentIssue false

New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples: Beyond the Hemispherical Constraint

Published online by Cambridge University Press:  22 March 2017

Nicolas Rolland*
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
François Vurpillot
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
Sébastien Duguay
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
Baishakhi Mazumder
Affiliation:
Department of Material Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
James S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
Didier Blavette
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
*
*Corresponding author. [email protected]
Get access

Abstract

Accuracy of atom probe tomography measurements is strongly degraded by the presence of phases that have different evaporation fields. In particular, when there are perpendicular interfaces to the tip axis in the specimen, layers thicknesses are systematically biased and the resolution is degraded near the interfaces. Based on an analytical model of field evaporated emitter end-form, a new algorithm dedicated to the 3D reconstruction of multilayered samples was developed. Simulations of field evaporation of bilayer were performed to evaluate the effectiveness of the new algorithm. Compared to the standard state-of-the-art reconstruction methods, the present approach provides much more accurate analyzed volume, and the resolution is clearly improved near the interface. The ability of the algorithm to handle experimental data was also demonstrated. It is shown that the standard algorithm applied to the same data can commit an error on the layers thicknesses up to a factor 2. This new method is not constrained by the classical hemispherical specimen shape assumption.

Type
Reconstruction
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87, 298304.Google Scholar
Beinke, D., Oberdorfer, C. & Schmitz, G. (2016). Towards an accurate volume reconstruction in atom probe tomography. Ultramicroscopy 165, 3441.Google Scholar
Blavette, D., Sarrau, J.M., Bostel, A. & Gallot, J. (1982). Direction et distance d’analyse à la sonde atomique. Revue de Physique Appliquée 17, 435440.Google Scholar
Delaunay, C. (1841). Sur la surface de révolution dont la courbure moyenne est constante. Journal de Mathématiques Pures et Appliquées 6, 309314.Google Scholar
Gault, B., Haley, D., de Geuser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011a). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.CrossRefGoogle ScholarPubMed
Gault, B., Loi, S.T., Araullo-Peters, V.J., Stephenson, L.T., Moody, M.P., Shrestha, S.L., Marceau, R.K.W., Yao, L., Cairney, J.M. & Ringer, S.P. (2011b). Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111, 16191624.Google Scholar
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S., Reinhard, D., Kelly, T.F. & Prosa, T.J. (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15, 292293.Google Scholar
Gomer, R. (1961). Field Ionization and Field Emission. Cambridge, MA: Harvard, University Press.Google Scholar
Haley, D., Moody, M.P. & Smith, G.D.W. (2013). Level set methods for modelling field evaporation in atom probe. Microsc Microanal 19, 17091717.Google Scholar
Larson, D.J., Geiser, B.P., Prosa, T.J., Gerstl, S.S.A., Reinhard, D.A. & Kelly, T.F. (2011). Improvements in planar feature reconstructions in atom probe tomography. J Microsc 243, 1530.Google Scholar
Larson, D.J., Geiser, B.P., Prosa, T.J. & Kelly, T.F. (2012). On the use of simulated field-evaporated specimen apex shapes in atom probe tomography data reconstruction. Microsc Microanal 18, 953963.CrossRefGoogle ScholarPubMed
Marquis, E.A., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241, 225233.Google Scholar
Oberdorfer, C., Eich, S.M., Lütkemeyer, M. & Schmitz, G. (2015). Applications of a versatile modelling approach to 3D atom probe simulations. Ultramicroscopy 159, Part 2, 184194.Google Scholar
Oberdorfer, C., Eich, S.M. & Schmitz, G. (2013). A full-scale simulation approach for atom probe tomography. Ultramicroscopy 128, 5567.CrossRefGoogle ScholarPubMed
Plateau, J. (1873). Statique Experimentale et Theorique des Liquides aux Seules Forces Moleculaires. Paris: Gauthier Villars.Google Scholar
Rolland, N., Vurpillot, F., Duguay, S. & Blavette, D. (2015a). Dynamic evolution and fracture of multilayer field emitters in atom probe tomography: A new interpretation. Eur Phys J Appl Phys 72, 21001.Google Scholar
Rolland, N., Vurpillot, F., Duguay, S. & Blavette, D. (2015b). A meshless algorithm to model field evaporation in atom probe tomography. Microsc Microanal 21, 16491656.CrossRefGoogle ScholarPubMed
Suram, S.K. & Rajan, K. (2013). Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation. Ultramicroscopy 132, 136142.Google Scholar
Vurpillot, F., Gaillard, A., Da Costa, G. & Deconihout, B. (2013a). A model to predict image formation in atom probe tomography. Ultramicroscopy 132, 152157.Google Scholar
Vurpillot, F., Gault, B., Geiser, B.P. & Larson, D.J. (2013b). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.Google Scholar
Vurpillot, F., Larson, D. & Cerezo, A. (2004). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interface Anal 36, 552558.Google Scholar