Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:15:52.286Z Has data issue: false hasContentIssue false

Nano-Sized Cuboid-Shaped Phase in Mg–Nd–Y Alloy and its Behavior During Isothermal Aging

Published online by Cambridge University Press:  30 November 2016

Jingxu Zheng
Affiliation:
Frontier Research Center for Materials Structure, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, P.R. China School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, P.R. China
Zhongyuan Luo
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, P.R. China
Lida Tan
Affiliation:
Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Canada
Bin Chen*
Affiliation:
Frontier Research Center for Materials Structure, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, P.R. China School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, P.R. China
*
*Corresponding author. [email protected]
Get access

Abstract

In the present study, nano-sized cuboid-shaped particles in Mg–Nd–Y are studied by means of Cs-corrected atomic-scale high-angle annular dark-field scanning transmission electron microscopy. The structure of the cuboid-shaped phase is identified to be yttrium (major component) and neodymium atoms in face-centered cubic arrangement without the participation of Mg. The lattice parameter a=5.15 Å. During isothermal aging at 225°C, Mg3(Nd,Y) precipitates adhere to surface (100) planes of the cuboid-shaped particles with the orientation relationship: $[100]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[100]_{{{\rm Cuboid}}} $ and $[310]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[012]_{{{\rm Cuboid}}} $ . The fully coherent interfaces between the precipitates and the cuboid-shaped phases are reconstructed and categorized into two types: $(400)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface and $(200)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antion, C., Donnadieu, P., Perrard, F., Deschamps, A., Tassin, C. & Pisch, A. (2003). Hardening precipitation in a Mg–4Y–3RE alloy. Acta Mater 51(18), 53355348.CrossRefGoogle Scholar
Chang, J., Guo, X., He, S., Fu, P., Peng, L. & Ding, W. (2008). Investigation of the corrosion for Mg–xGd–3Y–0.4 Zr (x=6, 8, 10, 12wt%) alloys in a peak-aged condition. Corros Sci 50(1), 166177.Google Scholar
Delfino, S., Saccone, A. & Ferro, R. (1990). Phase relationships in the Nd-magnesium alloy system. Metall Trans A 21(8), 21092114.CrossRefGoogle Scholar
Gao, L., Chen, R. & Han, E. (2009). Microstructure and strengthening mechanisms of a cast Mg–1.48 Gd–1.13 Y–0.16 Zr (at.%) alloy. J Mater Sci 44(16), 44434454.Google Scholar
Gao, Y., Wang, Q., Gu, J., Zhao, Y. & Tong, Y. (2007). Behavior of Mg–15Gd–5Y–0.5 Zr alloy during solution heat treatment from 500 to 540° C. Mater Sci Eng A 459(1), 117123.CrossRefGoogle Scholar
Gao, Y., Wang, Q., Gu, J., Zhao, Y., Tong, Y. & Kaneda, J. (2008). Effects of heat treatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5 Zr alloy. J Rare Earth 26(2), 298302.Google Scholar
Guo, S., Sun, Y., Yi, J., Zhu, K., Liu, P., Zhu, Y., Zhu, G.-z., Chen, M., Ishida, M. & Zhou, H. (2016). Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: A bridge between crystal structure and electrochemical performance. NPG Asia Mater 8(4), e266.Google Scholar
He, S., Zeng, X.Q., Peng, L., Gao, X., Nie, J. & Ding, W. (2007). Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5 Zr alloy. J Alloys Compd 427(1), 316323.Google Scholar
Krivanek, O., Lovejoy, T. & Dellby, N. (2015). Aberration‐corrected STEM for atomic‐resolution imaging and analysis. J Microsc 259(3), 165172.CrossRefGoogle ScholarPubMed
Li, D., Zeng, X., Dong, J., Zhai, C. & Ding, W. (2009). Microstructure evolution of Mg–10Gd–3Y–1.2 Zn–0.4 Zr alloy during heat-treatment at 773K. J Alloys Compd 468(1), 164169.Google Scholar
Liang, S., Guan, D., Chen, L., Gao, Z., Tang, H., Tong, X. & Xiao, R. (2011). Precipitation and its effect on age-hardening behavior of as-cast Mg–Gd–Y alloy. Mater Design 32(1), 361364.CrossRefGoogle Scholar
Liu, P., Guan, P., Hirata, A., Zhang, L., Chen, L., Wen, Y., Ding, Y., Fujita, T., Erlebacher, J. & Chen, M. (2016). Visualizing under‐coordinated surface atoms on 3D nanoporous gold catalysts. Adv Mater 28, 17531759.Google Scholar
Nie, J.-F. (2012). Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43(11), 38913939.CrossRefGoogle Scholar
Nie, J., Gao, X. & Zhu, S.-M. (2005). Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr Mater 53(9), 10491053.CrossRefGoogle Scholar
Nie, J. & Muddle, B. (1999). Precipitation in magnesium alloy WE54 during isothermal ageing at 250 C. Scr Mater 40(10), 10891094.Google Scholar
Pavlyuk, V.V., Opaynych, I.M., Bodak, O.I., Cerny, R. & Yvon, K. (1996). Crystal structure of cerium magnesium, CeMg3 . Z Kristallogr 211(3), 220.Google Scholar
Urban, K.W. (2008). Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888), 506510.CrossRefGoogle ScholarPubMed
Vostrý, P., Smola, B., Stulikova, I., Von Buch, F. & Mordike, B. (1999). Microstructure evolution in isochronally heat treated Mg–Gd alloys. Phys Status Solidi A 175(2), 491500.Google Scholar
Williams, D.B. & Carter, C.B. (1996). The Transmission Electron Microscope. New York: Springer.Google Scholar
Xu, Z., Weyland, M. & Nie, J. (2014). Shear transformation of coupled β 1/β′ precipitates in Mg–RE alloys: A quantitative study by aberration corrected STEM. Acta Mater 81, 5870.Google Scholar
Zheng, J., Xu, X., Zhang, K. & Chen, B. (2015). Novel structures observed in Mg–Gd–Y–Zr during isothermal ageing by atomic-scale HAADF-STEM. Mater Lett 152, 287289.Google Scholar
Supplementary material: File

Zheng supplementary material

Figures S1-S6

Download Zheng supplementary material(File)
File 2.8 MB