No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
Knowledge of catalysts' sizes and shapes on their support material is crucial in understanding catalytic properties. With increasing interest in nanosized catalytic materials, it is vital to obtain structural information at the nanometer level in order to understand their catalytic behavior. We have recently demonstrated that very high angle (˜100mrad) annular dark-field (HAADF) images in a dedicated scanning transmission electron microscope (STEM) can be used to quantitatively measure the number of atoms of individual nano-sized clusters on a support material We are presently applying this technique to a bimetallic catalyst, PtRu5, where our data suggest that the shape of the PtRu5 particle is, surprisingly, oblate on the carbon substrate.
PtRu5 is of interest for methanol oxidation for applications in batteries. PtRu5 compounds were produced by a molecular precursor method. Imaging was performed on a Field Emission Gun (FEG) Vacuum Generators HB501 STEM operated at 100kV.