Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T03:09:52.420Z Has data issue: false hasContentIssue false

Nanometer Scale Tomographic Investigation of Fine Scale Precipitates in a CuFeNi Granular System by Three-Dimensional Field Ion Microscopy

Published online by Cambridge University Press:  02 October 2012

Sophie Cazottes
Affiliation:
Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet,BP12, 76801 Saint Etienne du Rouvray cedex, France
François Vurpillot
Affiliation:
Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet,BP12, 76801 Saint Etienne du Rouvray cedex, France
Abdeslem Fnidiki*
Affiliation:
Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet,BP12, 76801 Saint Etienne du Rouvray cedex, France
Dany Lemarchand
Affiliation:
Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet,BP12, 76801 Saint Etienne du Rouvray cedex, France
Marcello Baricco
Affiliation:
Dipartimento di Chimica IFM and NIS/INSTM, Università di Torino, Via P.Giuria 9, 10125 Torino, Italy
Frederic Danoix
Affiliation:
Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet,BP12, 76801 Saint Etienne du Rouvray cedex, France
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The microstructure of Cu80Fe10Ni10 (at. %) granular ribbons was investigated by means of three-dimensional field ion microscopy (3D FIM). This ribbon is composed of magnetic precipitates embedded in a nonmagnetic matrix. The magnetic precipitates have a diameter smaller than 5 nm in the as-spun state and are coherent with the matrix. No accurate characterization of such a microstructure has been performed so far. A tomographic characterization of the microstructure of melt spun and annealed Cu80Fe10Ni10 ribbon was achieved with 3D FIM at the atomic scale. A precise determination of the size distribution, number density, and distance between the precipitates was carried out. The mean diameter for the precipitates is 4 nm in the as-spun state. After 2 h at 350°C, there is an increase of the size of the precipitates, while after 2 h at 400°C the mean diameter of the precipitates decreases. Those data were used as inputs in models that describe the magnetic and magnetoresistive properties of this alloy.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allia, P., Knobel, M., Tiberto, P. & Vinai, F. (1995). Magnetic properties and giant magnetoresistance of melt-spun granular Cu100−x -Co x alloys. Phys Rev B 52, 1539815411.Google Scholar
Baricco, M., Bosco, E., Acconciaioco, G., Rizzi, P. & Coisson, M. (2004). Rapid solidification of Cu–Fe–Ni alloys. Mater Sci Eng A 375, 10191023.Google Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.Google Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom probe microscopy. Ultramicroscopy 89, 145153.Google Scholar
Cazottes, S. (2008). Microstructure à fine échelle d'alliages a propriétés de magnetoresistance géante: relation avec les propriétés magnétiques. Cas de rubans Cu80FexNi20−x (x = 5,10,15 at%). PhD Thesis, Université de Rouen.Google Scholar
Cazottes, S., Coïsson, M., Fnidiki, A., Lemarchand, D. & Danoix, F. (2009a). Influence of magnetic interactions on magnetic and magnetoresistive properties of Cu80Fe10Ni10 ribbons. J Appl Phys 105, 093917093923.Google Scholar
Cazottes, S., Danoix, F., Fnidiki, A., Lemarchand, D. & Baricco, M. (2009b). Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons. Ultramicroscopy 109, 625630.Google Scholar
Cazottes, S., Wang, G.Y., Fnidiki, A., Lemarchand, D., Renault, P.O. & Danoix, F. (2008). Transmission electron microscopy and X-ray diffraction study of microstructural evolution in magnetoresistive Cu–Fe–Ni ribbons. Philos Mag 88, 13451356.CrossRefGoogle Scholar
Cerezo, A., Hetherington, M.G., Hyde, J.M., Miller, M.K., Smith, G.D.W. & Underkoffler, J.S. (1992). Visualisation of three-dimensional microstructures. Surf Sci 266, 471480.Google Scholar
Chen, L.H., Jin, S., Tiefel, T.H., Chang, S.H. & Eibschtuz, M. (1994). Magnetoresistance in a spinodally decomposed Cu-Ni-Fe alloy consisting of two ferromagnetic phases. Phys Rev B 49, 91949197.CrossRefGoogle Scholar
Chen, L.H., Jin, S., Tiefel, T.H., Chang, S.H. & Eibschtuz, M. (1996). Giant magnetoresistance in melt-spun Cu80Ni10Fe10 ribbons. J Appl Phys 79, 55996001.Google Scholar
Chuang, Y.-Y., Schmid, R. & Austin Chang, Y. (1985). Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe-Cu-Ni system. Acta Met 33, 13691380.Google Scholar
Duc, N.H., Tuan, N.A., Fnidiki, A., Dorian, C., Teillet, J., Ben Youssef, J. & Le Gall, H. (2002). Structural, magnetic and Mössbauer studies of Fe-Cu granular films. J Phys-Condens Mat 14, 66576666.Google Scholar
Eymery, J.P., Fnidiki, A. & Riviere, J.P. (1983). CEMS as applied to implantation studies in Fe-Al 40 at-percent. Nucl Instrum Methods 209, 919942.Google Scholar
Eymery, J.P., Merakeb, N., Goudeau, Ph., Fnidiki, A. & Bouzabata, B. (2003). A Mossbauer comparative study in the local environment in metastable 304 stainless steel films depending on the preparation mode. J Magn Magn Mat 256, 227237.CrossRefGoogle Scholar
Ferrari, E.F., Da Silva, F.C.S. & Knobel, M. (1997). Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56, 60866093.Google Scholar
Fnidiki, A., Juraszek, J., Teillet, J., Duc, N.H., Danh, T.M., Kaabouchi, M. & Sella, C. (1998). Structural and magnetic properties of Ti/Fe multilayers. J Appl Phys 84, 33113316.CrossRefGoogle Scholar
Jessner, P., Danoix, R., Hannoyer, B., Danoix, F. & Gouné, M. (2007). Three-dimensional reconstruction of Fe-Cr-nitrides in a Fe-5at%Cr alloy. In Surface Modification Technology XXI, Sudarshan, T.S. & Jeandin, M. (Eds.), pp. 6571. Materials Park, OH: ASM International.Google Scholar
Juraszek, J., Fnidiki, A., Teillet, J., Toulemonde, M., Michel, A. & Keune, W. (2000). Directional effects of heavy-ion irradiation in Tb/Fe multilayers. Phys Rev B 61, 1215.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.Google Scholar
Lemoine, C., Fnidiki, A., Lemarchand, D. & Teillet, J. (1999). Mossbauer and TEM study of Fe-Cr powders elaborated by mechanical alloying. J Magn Magn Mat 203, 184186.Google Scholar
Martins, C.S. & Missel, F.P. (1999). Magnetization and giant magnetoresistance in melt-spun and annealed CuFeNi alloys. J Magn Magn Mater 205, 275282.Google Scholar
Martins, C.S., Rechenberg, H.R. & Missel, F.P. (1998). Giant magneto resistance in CuFeNi alloys. J Appl Phys 83, 70017003.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Clarendon Press.Google Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.Google Scholar
Mishin, Y., Mehl, M.J. & Papaconstantopoulos, D.A. (2005). Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations. Acta Mater 53, 40294041.Google Scholar
Richomme, F., Fnidiki, A., Teillet, J. & Toulemonde, M. (1996). Tb/Fe amorphous multilayers: Transformations under ions irradiation. Nucl Instrum Meth B 107, 374380.CrossRefGoogle Scholar
Semboshi, S., Al-Kassab, T., Gemma, R. & Kircheim, R. (2009). Microstructural evolution of Cu-1 at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity. Ultramicroscopy 109, 593598.Google Scholar
Vaumousse, D., Cerezo, A. & Warren, P.J. (2003). A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221.Google Scholar
Vurpillot, F., Gilbert, M. & Deconihout, B. (2007). Towards the three-dimensional field ion microscope. Surf Interface Anal 39, 273277.CrossRefGoogle Scholar
Wei, C-Y., Currentland, M.I. & Seidman, D.N. (1981). Direct observation of the primary state of damage of ion-irradiated tungsten I. Three-dimensional spatial distribution of vacancies. Philos Mag 44, 459491.Google Scholar
Zhang, S. & Levy, P.M. (1993). Conductivity and magnetoresistance in magnetic granular films. J Appl Phys 73, 53155319.CrossRefGoogle Scholar