Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T20:13:35.409Z Has data issue: false hasContentIssue false

Microstructure Refinement of Cold-Sprayed Copper Investigated By Electron Channeling Contrast Imaging

Published online by Cambridge University Press:  24 June 2014

Yinyin Zhang
Affiliation:
Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Canada QC H3A 0C5
Nicolas Brodusch
Affiliation:
Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Canada QC H3A 0C5
Sylvie Descartes
Affiliation:
Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Canada QC H3A 0C5 Université de Lyon, CNRS, INSA-Lyon, LaMCoS, UMR5259, F-69621 Villeurbanne, France
Richard R. Chromik*
Affiliation:
Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Canada QC H3A 0C5
Raynald Gauvin
Affiliation:
Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Canada QC H3A 0C5
*
*Corresponding author. [email protected]
Get access

Abstract

The electron channeling contrast imaging technique was used to investigate the microstructure of copper coatings fabricated by cold gas dynamic spray. The high velocity impact characteristics for cold spray led to the formation of many substructures, such as high density dislocation walls, dislocation cells, deformation twins, and ultrafine equiaxed subgrains/grains. A schematic model is proposed to explain structure refinement of Cu during cold spray, where an emphasis is placed on the role of dislocation configurations and twinning.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assadi, H., Gartner, F., Stoltenhoff, T. & Kreye, H. (2003). Bonding mechanism in cold gas spraying. Acta Mater 51, 43794394.CrossRefGoogle Scholar
Bay, B., Hansen, N., Hughes, D.A. & Wilsdorf, K.D. (1992). Overview no. 96 evolution of fcc deformation structures in polyslip. Acta Metall Mater 40(2), 205219.CrossRefGoogle Scholar
Booker, G., Shaw, A., Whelan, M. & Hirsch, P. (1967). Some comments on the interpretation of the ‘kikuchi-like reflection patterns’ observed by scanning electron microscopy. Philos Mag 16(144), 11851191.CrossRefGoogle Scholar
Borchers, C., Gartner, F. & Stoltenhoff, T. (2003). Microstructural and macroscopic properties of cold sprayed copper coatings. J Appl Phys 93(12), 1006410070.CrossRefGoogle Scholar
Borchers, C., Gartner, F., Stoltenhoff, T. & Krey, H. (2004). Microstructural bonding features of cold sprayed face centered cubic metals. J Appl Phys 96(8), 42884292.CrossRefGoogle Scholar
Burt, H., Dennison, J.P. & Wilshire, B. (1979). Friction stress measurements during creep of Nimonic 105. Metal Sci 13(5), 295300.CrossRefGoogle Scholar
Coates, D. (1967). Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philoso Mag 16(144), 11791184.CrossRefGoogle Scholar
Czernuszka, J., Long, N., Boyes, E. & Hirsch, P. (1990). Imaging of dislocations using backscattered electrons in a scanning electron microscope. Philoso Mag Lett 62, 227232.CrossRefGoogle Scholar
Davis, J.R. (2001). Copper and Copper Alloys. ASM International, Materials Park, OH, USA.CrossRefGoogle Scholar
Guo, W.-W., Wang, X.-M. & Li, X.-W. (2010). SEM electron channeling contrast imaging of dislocation structures in fatigued [017] Cu single crystals oriented for critical double slip. Mater Trans 51(5), 887891.CrossRefGoogle Scholar
Gutierrez-Urrutia, I. & Raabe, D. (2011). Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater 59(16), 64496462.CrossRefGoogle Scholar
Gutierrez-Urrutia, I. & Raabe, D. (2012). Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scr Mater 66, 343346.CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Zaefferer, S. & Raabe, D. (2009). Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scr Mater 61, 737740.CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Zaefferer, S. & Raabe, D. (2010). The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel. Mater Sci Eng A 527, 35523560.CrossRefGoogle Scholar
Howie, A. (1974). Theory of diffraction contrast effects in the scanning electron microscope. In Quantitative Scanning Electron Microscopy, Holt D.B., Muir M., Grant P. & Boswarva I. (Eds.), pp. 183212. London: Academic Press.Google Scholar
Humphreys, F.J. (2001). Review grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci 36, 38333854.CrossRefGoogle Scholar
Humphreys, F.J. & Hatherly, M. (2004). Recrystallization and Related Annealing Phenomena. Oxford, UK: Pergamon Press.Google Scholar
Irissou, E., Legoux, J.G., Arsenault, B. & Moreau, C. (2007). Investigation of Al-Al2O3 cold spray coating formation and properties. J Therm Spray Technol 16(5–6), 661668.CrossRefGoogle Scholar
Joy, D.C. (1974). Electron channeling patterns in the SEM. In Quantitative Scanning Electron Microscopy, Holt D.B., Muir M., Grant P. & Boswarva I. (Eds.), pp. 131182. London: Academic Press.Google Scholar
Joy, D.C., Newbury, D.E. & Davidson, D.L. (1982). Electron channeling patterns in the scanning electron microscope. J Appl Phys 53(8), 81122.CrossRefGoogle Scholar
Kaneko, Y., Ishikawa, M. & Hashimoto, S. (2005). Dislocation structures around crack tips of fatigued polycrystalline copper. Mater Sci Eng A 400, 418421.CrossRefGoogle Scholar
King, P.C., Zahiri, S.H. & Jahedi, M. (2009a). Thermal Spray 2009. In Proceedings of the International Thermal Spray Conference. Marple, B.R., Hyland M.M., Lau, Y.-C., Li, C.-J., Lima, R.S., Montavon, G. (Eds.), pp. 243248. Las Vegas, Nevada, USA: ASM International.Google Scholar
King, P.C., Zahiri, S.H. & Jahedi, M. (2009b). Microstructural refinement within a cold-sprayed copper particle. Metall Mater Trans A 40A, 21152123.CrossRefGoogle Scholar
Koivuluoto, H., Honkanen, M. & Vuoristo, P. (2010). Cold-sprayed copper and tantalum coatings—Detailed FESEM and TEM analysis. Surf Coat Technol 204(15), 23532361.CrossRefGoogle Scholar
Meyers, M.A., Benson, D.J., Vohringer, O., Kad, B.K., Xue, Q. & Fu, H.H. (2002). Constitutive description of dynamic deformation: Physically-based mechanisms. Mater Sci Eng A 322(1–2), 194216.CrossRefGoogle Scholar
Meyers, M.A., Lasalvia, J.C., Nestorenko, V.F., Chen, Y.J. & Kad, B.K. (1997). International Conference on Recrystallization and Related Phenomena. In Proceedings of ReX’96: The Third International Conference on Recrystallization and Related Phenomena, McNelley T.R. (Ed.), pp. 279286. Monterey, CA: ReX’96 International Advisory Board and Organizing Committee.Google Scholar
Morin, P., Pitaval, M., Besnard, D. & Fontaine, G. (1979). Electron–channelling imaging in scanning electron microscopy. Philos Mag A 40(4), 511524.CrossRefGoogle Scholar
Murr, L.E., Niou, C.S., Pappu, S., Rivas, J.M. & Quinones, S.A. (1995). LEDS in ultra-high strain-rate deformation. Phys Stat Sol (a) 149, 253274.CrossRefGoogle Scholar
Ng, B.C., Simkin, B.A. & Crimp, M.A. (1997). Electron channeling contrast imaging of dislocation structures in deformed stoichiometric NiAl. Mater Sci Eng A 239, 150156.CrossRefGoogle Scholar
Nowell, M. & Wright, S. (2004). Phase differentiation via combined EBSD and XEDS. J Microsc 213(3), 296305.CrossRefGoogle ScholarPubMed
Papyrin, V.K.A., Klinkov, S., Alkhimov, A. & Fomin, V. (2007). Cold Spray Technology. Amsterdam: Elsevier.Google Scholar
Schmidt, T., Gartner, F., Assadi, H. & Helmut, H.K. (2006). Development of a generalized parameter window for cold spray deposition. Acta Mater 54, 729742.CrossRefGoogle Scholar
Schwartz, A., Kumar, M., Adams, B. & Field, D. (2009). Electron Backscatter Diffraction in Materials Science. New York, USA: Springer.CrossRefGoogle Scholar
Steinmetz, D.R., Japel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed-Akbari, A., Hickel, T., Roters, F. & Raabe, D. (2013). Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Mater 61, 494510.CrossRefGoogle Scholar
Venables, J. & Harland, C. (1973). Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Philos Mag 27(5), 11931200.CrossRefGoogle Scholar
Wilkinson, A. (1997). Methods for determining elastic strains from electron backscatter diffraction and electron channelling patterns. Mater Sci Technol 13(1), 7984.CrossRefGoogle Scholar
Wilkinson, A., Anstis, G., Czernuszka, J., Long, N. & Hirsch, P. (1993). Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon. Philos Mag A 68(1), 5980.CrossRefGoogle Scholar
Wilkinson, A. & Hirsch, P. (1997). Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28(4), 279308.CrossRefGoogle Scholar
Wilkinson, A. & Randman, D. (2010). Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction. Philos Mag 90(9), 11591177.CrossRefGoogle Scholar
Wilsdorf, D.K. (1989). Theory of plastic deformation: Properties of low energy dislocation structures. Mater Sci Eng A 113, 141.CrossRefGoogle Scholar
Wright, S.I., Nowell, M.M. & FIELD, D.P. (2011). A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17(3), 316329.CrossRefGoogle ScholarPubMed
Zaefferer, S. (2011). A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46(6), 607628.CrossRefGoogle Scholar
Zhang, Z. & Wang, Z. (1998). Investigations of dislocation patterns within grains and near grain boundaries in copper by the electron channelling contrast technique in scanning electron microscopy. Philos Mag Lett 78(2), 105113.CrossRefGoogle Scholar
Zou, Y., Qin, W., Irissou, E., Legoux, J.G., Yue, S. & Szpunar, J.A. (2009). Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: Electron backscatter diffraction characterization. Scr Mater 61, 899902.CrossRefGoogle Scholar