Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T15:04:24.673Z Has data issue: false hasContentIssue false

Microstructural Evaluation of Boron Free and Boron Containing Heat-Treated Ti-35Nb-7.2Zr-5.7Ta Alloy

Published online by Cambridge University Press:  02 March 2012

Pallab Majumdar*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, India
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The microstructure of Ti-35Nb-7.2Zr-5.7Ta (TNZT) and Ti-35Nb-7.2Zr-5.7Ta-0.5B (TNZTB) alloys under different heat treatment conditions has been analyzed. The solution-treated and water-quenched TNZT sample consists mainly of β phase with a very small amount of fine athermal ω precipitate. Precipitation of α can be observed when solution-treated samples are directly aged at 580°C for 8 h. The microstructure of the samples subjected to single-stage aging at 300°C or 400°C consists of ω precipitates in equiaxed β grains. Second stage aging at 580°C for 8 h after first stage of aging at 300°C or 400°C results in the replacement of ω precipitates by secondary α. In all of these samples, the amount of ω or α phase was very small, and therefore they could not be detected by X-ray diffraction studies. However, analysis of selected area diffraction patterns obtained from transmission electron microscopy studies confirms their presence. The addition of boron leads to the formation of dispersed precipitates of TiB in the β matrix of the TNZT alloy and also refines the β grains in the microstructure. However, other microstructural features of the TNZTB alloy are similar to those of the TNZT alloy.

Type
Biological and Biomedical Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akahori, T., Niinomi, M., Fukui, H., Ogawa, M. & Toda, H. (2005). Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater Sci Eng C 25, 248254.Google Scholar
Bagarjatskij, J.A., Nosova, G.I. & Tagunova, T.V. (1961). On the nature of the omega phase in quenched titanium alloys. Acta Crystall 14, 10871088.CrossRefGoogle Scholar
Banerjee, D. & Krishnan, R.V. (1981). Challenges in alloy design: Titanium for the aerospace industry. In Alloy Design, Ranganathan, S., Arunachalam, V.S. & Cahn, R.W. (Eds.), pp. 119137. Bangalore: Indian Academy of Science.Google Scholar
Banerjee, R., Collins, P.C., Genç, A. & Fraser, H.L. (2003). Direct laser deposition of in situ Ti-6Al-4V-TiB composites. Mater Sci Eng A 358, 343349.CrossRefGoogle Scholar
Banerjee, R., Nag, S. & Fraser, H.L. (2005). A novel combination approach to the development of beta titanium alloys for orthopaedic implants. Mater Sci Eng C 25, 282289.CrossRefGoogle Scholar
Banerjee, R., Nag, S., Stechschulte, J. & Fraser, H.L. (2004). Strengthening mechanism in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys. Biomaterials 25, 34133419.Google Scholar
Boyer, R., Welsch, G. & Collings, E.W. (1994). Materials Properties Hand Book: Titanium Alloys. ASM International, OH: Materials Park.Google Scholar
Chen, W. & Boehlert, C.J. (2008). The elevated-temperature fatigue behavior of boron-modified Ti-6Al-4V(wt%) castings. Mater Sci Eng A 494, 132138.Google Scholar
Feng, H., Zhou, Y., Jia, D. & Meng, Q. (2004). Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti-FeMo-B prepared by spark plasma sintering. Composites Sci Technol 6, 24952500.CrossRefGoogle Scholar
Ferrandini, P.L., Cardoso, F.F., Souza, S.A., Afonso, C.R. & Caram, R. (2007). Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys. J Alloys Comp 433, 207210.CrossRefGoogle Scholar
Geng, K., Lu, W., Yang, Z. & Zhang, D. (2003). In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3. Mater Lett 57, 40544057CrossRefGoogle Scholar
Graef, M.D., Löfvander, P.A., McCullough, C. & Levi, C.G. (1992). The evolution of metastable Bf in a Ti-Al-B alloy. Acta Metall Mater 40, 33953406.CrossRefGoogle Scholar
Hao, Y.L., Niinomi, M., Kuroda, D., Fukunaga, F., Zhou, Y.L., Yang, R. & Suzuki, A. (2002). Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Metall Mater Trans A 33, 31373144.Google Scholar
Ikeda, M., Komatsu, S.Y., Sowa, I. & Niinomi, M. (2002). Aging behavior of the Ti-29Nb-13Ta-4.6Zr new beta alloy for medical implants. Metall Mater Trans A 33, 487493.CrossRefGoogle Scholar
Kim, H.S., Kim, W.Y. & Lim, S.H. (2006). Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical applications. Scripta Mater 54, 887891.Google Scholar
Kobayashi, E., Doi, H., Yoneyama, T., Hamanaka, H., Gimson, I.R., Best, S.M., Shelton, J.C. & Bonfield, W. (1998). Influence of aging heat treatment on mechanical properties of biomedical Ti-Zr based ternary alloys containing niobium. J Mater Sci Mater Med 9, 625630.Google Scholar
Kuroda, D., Kawasaki, H., Yamamoto, A., Hiromoto, S. & Hanawa, T. (2005). Mechanical properties and microstructures of new Ti-Fe-Ta and Ti-Fe-Ta-Zr system alloys. Mater Sci Eng C 25, 312320.CrossRefGoogle Scholar
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y. & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243, 244249.CrossRefGoogle Scholar
Lee, C.M., Ho, W.F., Ju, C.P. & Chern Lin, J.H. (2002). Structure and properties of titanium-25 niobium-x iron. J Mater Sci Mater Med 13, 695700.Google Scholar
Li, S.J., Niinomi, M., Akahori, T., Kasuga, T., Yang, R. & Hao, Y.L. (2004). Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical applications. Biomaterials 25, 33693378.CrossRefGoogle Scholar
Lin, C.W., Ju, C.P. & Chern Lin, J.H. (2005). A comparison of the fatigue behavior of cast Ti-7.5Mo with C.P. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. Biomaterials 26, 28992907.CrossRefGoogle ScholarPubMed
Long, M. & Rack, H.J. (2005). Subsurface deformation and microcrack formation in Ti-35Nb-8Zr-5Ta-O(X) during reciprocating sliding wear. Mater Sci Eng C 25, 382388.Google Scholar
Lu, W., Zhang, D., Zhang, X., Wu, R., Sakata, T. & Mori, H. (2001). Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J Alloys Compd 327, 240244.CrossRefGoogle Scholar
Majumdar, P. (2009). Processing and characterization of low modulus biocompatible titanium based alloys. PhD Thesis. Kharagpur, India: Indian Institute of Technology.Google Scholar
Majumdar, P., Singh, S.B. & Chakraborty, M. (2010). Fatigue behaviour of in situ TiB reinforced β-titanium alloy composite. Mater Lett 64, 27482751.CrossRefGoogle Scholar
Manivasagam, G., Mudali, U.K., Asokamani, R. & Raj, B. (2003). Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices. Corros Rev 21, 125159.Google Scholar
Molchanova, E.K. (1965). Ti–B phase diagram. In Phase Diagrams of Titanium Alloys, Glazunov, S.G. (Ed.), pp. 102104. Jerusalem: Israel Program for Scientific Translation.Google Scholar
Morinaga, M., Kato, M., Kamimura, T., Fukumoto, M., Harada, I. & Kubo, K. (1993). Theoritical design of β-type titanium alloys. In Proceedings of Titanium'92: Science and Technology, Froes, F.H. & Caplon, I. (Eds.), pp. 217224. Warrendale, PA: Minerals, Metals and Materials Society.Google Scholar
Nag, S., Banerjee, R. & Fraser, H.L. (2005). Microstructural evolution and strengthing mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Mater Sci Eng C 25, 357362.CrossRefGoogle Scholar
Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 24, 26732683.CrossRefGoogle ScholarPubMed
Niinomi, M., Akahori, T., Takeuchi, T., Katsura, S., Fukui, H. & Toda, H. (2005). Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. Mater Sci Eng C 25, 417425.Google Scholar
Ocelı'k, V., Matthews, D. & Hosson, J.T.M.D. (2005). Sliding wear resistance of metal matrix composite layers prepared by high power laser. Surf Coat Technol 197, 303.CrossRefGoogle Scholar
Ohmori, Y., Ogo, T., Nakai, K. & Kobayashi, S. (2001). Effects of ω-phase precipitation on β→α, α″ transformations in a metastable β titanium alloy. Mater Sci Eng A 312, 182188.CrossRefGoogle Scholar
Okazaki, Y. (2001). A new Ti-15Zr-4Nb-Ta alloy for medical applications. Curr Opin Solid State Mater Sci 5, 4553.CrossRefGoogle Scholar
Qazi, J.I., Marquardt, B., Allard, L.F. & Rack, H.J. (2005). Phase transformation in Ti-35-7Zr-5Ta (0.06-0.68)O alloys. Mater Sci Eng C 25, 389397.CrossRefGoogle Scholar
Sagaguchi, N., Niinomi, M., Akahori, T., Takeda, J. & Toda, H. (2005a). Effect of Ta content on mechanical properties of Ti-30Nb-xTa-5Zr. Mater Sci Eng C 25, 370376.CrossRefGoogle Scholar
Sagaguchi, N., Niinomi, M., Akahori, T., Takeda, J. & Toda, H. (2005b). Relationship between tensile behaviour and microstructure in Ti-Nb-Ta-Zr system alloys. Mater Sci Eng C 25, 363369.Google Scholar
Samuel, S., Nag, S., Scharf, T.W. & Banerjee, R. (2008). Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants. Mater Sci Eng C 28, 414420.CrossRefGoogle Scholar
Takahashi, M., Kobayashi, E., Doi, H., Yoneyama, T. & Hamanaka, H. (2000). Phase stability and mechanical properties of biomedical β type titanium-zirconium based alloys containing niobium. J Japan Inst Metals 64, 11201126.CrossRefGoogle Scholar
Takemoto, Y., Hida, M. & Sakakibara, A. (1993). Mechanism of ω→α transformation in β-Ti alloy. J Japan Inst Metals 57, 261267.Google Scholar
Tang, X., Ahmed, T. & Rack, H.J. (2000). Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. J Mater Sci 35, 18051811.Google Scholar
Yang, Z., Lu, W., Qin, J. & Zhang, D. (2006). Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature. Mater Sci Eng A 425, 185191.CrossRefGoogle Scholar
Zander, D., Olson, D.L. & Eliezer, D. (2003). Mutual effects of hydrogenation and deformation in Ti-Nb alloys. Metall Mater Trans A 34, 21992206.CrossRefGoogle Scholar
Zhang, X., Lu, W., Zhang, D. & Wu, R. (1999). In situ technique for synthesizing (TiB1TiC)/Ti composites. Scripta Mater 41, 3946CrossRefGoogle Scholar
Zorn, G., Lesman, A. & Gotman, I. (2005). Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation. Surf Coat Technol 201, 612618.CrossRefGoogle Scholar