Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T02:25:57.580Z Has data issue: false hasContentIssue false

Microscopic Examination of Chitosan–Polyphosphate Beads with Entrapped Spores of the Biocontrol Agent, Streptomyces melanosporofaciens EF-76

Published online by Cambridge University Press:  08 March 2005

Guy Jobin
Affiliation:
Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500, boul. Universitété Sherbrooke, Québec J1K 2R1, Canada
Gilles Grondin
Affiliation:
Service de microscopie, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
Geneviève Couture
Affiliation:
Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500, boul. Universitété Sherbrooke, Québec J1K 2R1, Canada
Carole Beaulieu
Affiliation:
Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500, boul. Universitété Sherbrooke, Québec J1K 2R1, Canada
Get access

Abstract

Spores of the biocontrol agent, Streptomyces melanosporofaciens EF-76, were entrapped by complex coacervation in beads composed of a macromolecular complex (MC) of chitosan and polyphosphate. A proportion of spores entrapped in beads survived the entrapment procedure as shown by treating spores from chitosan beads with a dye allowing the differentiation of live and dead cells. The spore-loaded chitosan beads could be digested by a chitosanase, suggesting that, once introduced in soil, the beads would be degraded to release the biocontrol agent. Spore-loaded beads were examined by optical and scanning electron microscopy because the release of the biological agent depends on the spore distribution in the chitosan beads. The microscopic examination revealed that the beads had a porous surface and contained a network of inner microfibrils. Spores were entrapped in both the chitosan microfibrils and the bead lacuna.

Type
BIOLOGICAL APPLICATIONS
Copyright
© 2005 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agbessi, S., Beauséjour, J., Déry, C., & Beaulieu, C. (2003). Antagonistic properties of two recombinant strains of Streptomyces melanosporofaciens obtained by intraspecific protoplast fusion. Appl Microbiol Biotechnol 62, 233238.Google Scholar
Arshady, R. (1990). Microspheres and microcapsules, a survey of manufacturing techniques. Part II: Coacervation. Polym Eng Sci 30, 905914.Google Scholar
Bashan, Y. (1986). Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51, 10891098.Google Scholar
Bashan, Y. & Gonzalez, L.E. (1999). Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51, 262266.Google Scholar
Beauséjour, J., Clermont, N., & Beaulieu, C. (2003). Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant & Soil 256, 463468.Google Scholar
Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W.A., & Brzezinski, R. (1992). Purification and characterization of a chitosanase from Streptomyces N174. Appl Microbiol Biotechnol 38, 188193.Google Scholar
Declerck, S., Strullu, D.G., Plenchette, C., & Guillemette, T. (1996). Entrapment of in vitro produced spores of Glomus versiforme in alginate beads: In vitro and in vivo inoculum potentials. J Biotechnol 48, 5157.Google Scholar
Doumbou, C.L., Akimov, V., & Beaulieu, C. (1998). Selection and characterization of microorganisms utilizing thaxtomin A, a phytotoxin produced by Streptomyces scabies. Appl Environ Microbiol 64, 43134316.Google Scholar
Doumbou, C.L., Akimov, V., Côté, M., Charest, P.-M., & Beaulieu, C. (2001). Taxonomic study on nonpathogenic streptomycetes isolated from common scab lesions on potato tubers. Syst Appl Microbiol 24, 451456.Google Scholar
Dulieu, C., Poncelet, D., & Neufeld, R.J. (1999). Encapsulation and immobilization techniques. In Cell Encapsulation Technology and Therapeutics. Kühtreiber, W.M., Lanza, R.P. & Chick, W.L. (Eds.), pp. 317. Boston: Birkhäuser.
El-Tarabily, K.A., Hardy, G.E.St.J., Sivasithamparam, K., Hussein, A.M., & Kurtböke, D.I. (1997). The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinomycetes. New Phytol 137, 495507.Google Scholar
Fraser, J.E. & Bickerstaff, G.F. (1997). Entrapment in calcium alginate. In Immobilization of Enzymes and Cells. Bickerstaff, G.F. (Ed.), pp. 6166. Totowa, NJ: Humana Press.
Frossard, E., Tekely, P., & Morel, J.L. (1994). Chemical characterization and agronomic effectiveness of phosphorus applied as a polyphosphate–chitosan complex. Fertil Res 37, 151158.Google Scholar
Galiana, A., Prin, Y., Mallet, B., Gnahoua, G.-M., Poitel, M., & Diem, H.G. (1994). Inoculation of Acacia mangium with alginate beads containing selected Bradyrhizobium strains under field conditions: Long-term effect on plant growth and persistence of the introduced strains in soil. Appl Environ Microbiol 60, 39743980.Google Scholar
Hadwiger, L.A., Ogawa, T., & Kuyama, H. (1994). Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. Mol Plant Microbe Interact 7, 531533.Google Scholar
Hammad, A.M.M. & El-Mohandes, M.A.O. (1999). Controlling fusarium wilt disease of cucumber plants via antagonistic microorganisms in free and immobilized states. Microbiol Res 154, 113117.Google Scholar
Iborra, J.L., Manjón, A., & Cánovas, M. (1997). Immobilization in carrageenans. In Immobilization of Enzymes and Cells. Bickerstaff, G.F. (Ed.), pp. 5360. Totowa, NJ: Humana Press.
Jobin, G. (2004). Immobilisation de spores de Streptomyces melanosporofaciens EF-76, un agent de lutte biologique dans des billes de chitosane. Doctoral theses. Sherbrooke, Canada: Université de Sherbrooke.
Kaş, H.S. (1997). Chitosan: Properties, preparations and application to microparticulate systems. J Microencapsulation 14, 689711.Google Scholar
Lahdenperä, M.-L., Simon, E., & Uoti, J. (1991). Mycostop—A novel biofungicide based on Streptomyces bacteria. In Biotic Interactions and Soil-Borne Diseases. Proc. 1st Conference of the European Foundation for Plant Pathology, Beemster, A.B.R., Bollen, G.J., Gerlach, M., Ruissen, M.A., Schippers, B. & Tempel, R.A. (Eds.), pp. 258263. Amsterdam: Elsevier.
Leung, K., Cassidy, M.B., Holmes, S.B., Lee, H., & Trevors, J.T. (1995). Survival of κ-carrageenan-encapsulated and unencapsulated Pseudomonas aeruginosa UG2Lr cells in forest soil monitored by polymerase chain reaction and spread plating. FEMS Microbiol Ecol 16, 7182.Google Scholar
Lever, M. (1973). Colometric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem Med 7, 274281.Google Scholar
Little, T.M. & Hills, F.J. (1978). Agricultural Experimentation. Design and Analysis. New York: John Wiley & Sons.
Liu, D., Anderson, N.A., & Kinkel, L.L. (1996). Selection and characterization of strains of Streptomyces suppressive to the potato scab pathogen. Can J Microbiol 42, 487502.Google Scholar
Lumsden, R.D., Lewis, J.A., & Fravel, D.R. (1995). Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In Biorational Pest Control Agents. Formulation and Delivery, Hall, R.H. & Barry, V. (Eds.), pp. 167182. Washington, DC: American Chemical Society.
Mi, F.-L., Shyu, S.-S., Kuan, C.-Y., Lee, S.-T., Lu, K.-T., & Jang, S.-F. (1999a). Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anti-cancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer. J Appl Polym Sci 74, 18681879.Google Scholar
Mi, F.-L., Shyu, S.-S., Wong, T.-B., Jang, S.-F., Lee, S.-T., & Lu, K.-T. (1999b). Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anti-cancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Polym Sci 74, 10931107.Google Scholar
Paul, E., Fages, J., Blanc, P., Goma, G., & Pareilleux, A. (1993). Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40, 3439.Google Scholar
Pridham, T.G., Anderson, P., Foley, C., Lindenfelser, L.A., Hesseltine, C.W., & Benedict, R.G. (1957). A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu 947953.Google Scholar
Schep, G.P., Sheperd, M.G., & Sullivan, P.A. (1984). Purification and properties of a β-1,6-glucanase from Penicillium brefeldianum. Biochem J 223, 707714.Google Scholar
Selmer-Olsen, E., Sørhaug, T., Birkeland, S.-E., & Pehrson, V. (1999). Survival of Lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration. J Ind Microbiol Biotechnol 23, 7985.Google Scholar
Singh, P.P., Shin, Y.C., Park, C.S., & Chung, Y.R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89, 9299.Google Scholar
Strullu, D.G. & Plenchette, C. (1991). The entrapment of Glomus sp. in alginate beads and their use as root inoculum. Mycol Res 95, 11941196.Google Scholar
Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y., & Mayama, V. (2001). Induction and signaling of an apoptotic response typified by DNA laddering in the defence response of oats to infection and elicitors. Mol Plant Microbe Interact 14, 477486.Google Scholar
Terbojevich, M. & Cosani, A. (1997). Molecular weight determination of chitin and chitosan. In Chitin Handbook, Muzzarelli, R.A.A. & Peter, M.G. (Eds.), pp. 87101. Atec, Grottammare, Italy: European Chitin Society.
Toussaint, V., Valois, D., Dodier, M., Faucher, E., Déry, C., Brzezinski, R., Ruest, L., & Beaulieu, C. (1997). Characterization of actinomycetes antagonistic to Phytophtora fragariae var. rubi, the causal agent of raspberry root rot. Phytoprotection 78, 4351.Google Scholar
Trejo-Estrada, S.R., Rivas Sepulveda, I., & Crawford, D.L. (1998). In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol 14, 865872.Google Scholar
Trevors, J.T., van Elsas, J.D., Lee, H., & Wolters, A.C. (1993). Survival of alginate-encapsulated Pseudomonas fluorescens cells in soil. Appl Microbiol Biotechnol 39, 637643.Google Scholar
Valois, D., Fayad, K., Barasubiye, T., Garon, M., Déry, C., Brzezinski, R., & Beaulieu, C. (1996). Glucanolytic actinomycetes antagonistic to Phytophtora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62, 16301635.Google Scholar
Vassilev, N., Vassileva, M., Azcon, R., & Medina, A. (2001). Interactions of an arbuscular mycorrhizal fungus with free or co-encapsulated cells of Rhizobium trifoli and Yarowia lipolytica inoculated into a soil–plant system. Biotechnol Lett 23, 149151.Google Scholar
Vonhoegen, H. (1999). Microsoft Excel 2000. Grand Livre. Paris, France: Micro Application.
Vorlop, K.-D. & Klein, J. (1981). Formation of spherical chitosan biocatalysts by ionotropic gelation. Biotechnol Lett 3, 914.Google Scholar
Vorlop, K.-D. & Klein, J. (1987). Entrapment of microbial cells in chitosan. Methods Enzymol 135, 259268.Google Scholar
Weller, D.M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26, 379407.Google Scholar
Yin, S.Y., Chang, J.K., & Xun, P.C. (1965). Studies in the mechanisms of antagonistic fertilizer “5406”. IV. The distribution of the antagonist in soil and its influence on the rhizosphere. Acta Microbiol Sin 11, 259288.Google Scholar
Young, R.J. & Lovell, P. A. (1991). Introduction to Polymers. 2nd ed. London: Chapman and Hall.