Article contents
Microcalorimeter EDS: Benefits and Drawbacks
Published online by Cambridge University Press: 02 July 2020
Extract
The commercial introduction of high-count-rate, near-room-temperature silicon drift detectors (presently available) and high-energy-resolution cryogenic microcalorimeters (forthcoming) is an exciting development in x-ray microanalysis, in which detector choices and capabilities have been essentially stable for many years. Both of these new energy-dispersive detectors promise improved capabilities for specific applications, e.g., faster EDS mapping (silicon drift detectors) and nanoscale particle analysis (microcalorimeters). In this paper, we briefly examine some of the important benefits and drawbacks of microcalorimeter EDS (μcal EDS) for x-ray microanalysis.
The primary benefit of μcal EDS over conventional semiconductor EDS is the factor of ∼ 20 improvement in energy resolution (∼ 4 eV, real-time analog signal processing), as shown in Figure 1.
- Type
- New Detectors—Benefits and Drawbacks
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 738 - 739
- Copyright
- Copyright © Microscopy Society of America
References
References:
- 1
- Cited by