Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T13:27:31.320Z Has data issue: false hasContentIssue false

Microanalytical Study of Ancient Gold Jewelry: Mediterranean Impact on the Early Iron Age Technology in Southwestern Iberia

Published online by Cambridge University Press:  18 June 2019

Pedro Valério*
Affiliation:
Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
Rui J.C. Silva
Affiliation:
i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
António M.M. Soares
Affiliation:
Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
M. Fátima Araújo
Affiliation:
Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
Lídia Baptista
Affiliation:
CEAACP, Centro de Estudos de Arqueologia, Artes e Ciências do Património; Arqueologia e Património Lda., Rua do Chouso 434, 4455-804 Santa Cruz do Bispo, Matosinhos, Portugal
Ever Calvo
Affiliation:
ERA Arqueologia, Calçada de Santa Catarina, 9C, 1495-705 Cruz Quebrada, Portugal
*
*Author for correspondence: Pedro Valério, E-mail: [email protected]
Get access

Abstract

The gold technology in Iberia underwent an important development during the Early Iron Age (EIA) following the arrival of new technological skills from the Mediterranean region, including the use of filigree, granulation, and brazing. This work presents the microanalytical study of EIA gold jewels (22 spherical beads and four tongue pendants) recovered from three graves in southern Portugal. The set of jewelry, showing an extraordinary stylistic resemblance, was characterized by optical microscopy, micro energy-dispersive X-ray spectrometry and scanning electron microscopy with X-ray microanalysis to establish the alloy composition and production techniques. The pieces show a close technological relation, making use of artificial gold alloys with different amounts of silver (c. 40 and 25%). The decorative styles include different types of filigree (solid wires and hollow wires), while the joining techniques comprise brazing with Au-Ag-Cu solders and, probably, sintering. In spite of those technological and stylistic features, clearly pointing to a Mediterranean influence, the absence of granulation suggests an indigenous workshop where exogenous technologies/decorations were not yet fully integrated in the manufacture of such luxury items.

Type
Micrographia
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almagro Gorbea, M (1977). El Bronce Final y el Período Orientalizante en Extremadura. Madrid: Bibliotheca Praehistorica Hispana.Google Scholar
Arruda, AM, Barbosa, R, Gomes, F & Sousa, E (2017). A necrópole da Vinha das Caliças (Beja, Portugal). In Sidereum Ana III. El Río Guadiana y Tartessos, Jiménez Ávila, J (Ed.), pp. 187225. Mérida: Consorcio de la Ciudad Monumental de Mérida.Google Scholar
Calvo, E & Simão, P (2017). A sepultura 38 da Quinta do Castelo 5 (Salvada, Beja). Notícia preliminar. In Sidereum Ana III. El Río Guadiana y Tartessos, Jiménez Ávila, J (Ed.), pp. 399405. Mérida: Consorcio de la Ciudad Monumental de Mérida.Google Scholar
Celestino Perez, S & Blanco Fernandez, JL (2006). La Joyeria en los Origenes de Extremadura: El Espejo de los Dioses. Mérida: Instituto de Arqueología de Mérida.Google Scholar
Chang, YA, Goldberg, D & Neumann, JP (1977). Phase diagrams and thermodynamics properties of ternary copper-silver systems. J Phys Chem Ref Data 6(3), 621673.Google Scholar
Echt, R & Thiele, WR (1995). Sintering, welding, brazing and soldering as bonding techniques in Etruscan and Celtic goldsmithing. In Prehistoric Gold in Europe. Mines, Metallurgy and Manufacture, Morteani, G & Northover, JP (Eds.), pp. 435451. Dordrecht: Kluwer Academic Publishers.Google Scholar
Gonçalves, VF (2005). Cascais há 5000 anos. Cascais: Câmara Municipal de Cascais.Google Scholar
Guerra, MF & Tissot, I (2016). Bronze Age and Iron Age gold torcs and earrings from the Iberian Atlantic façade: A non-invasive multi-analytical approach to the characterisation of the alloys and the corrosion. X-Ray Spectrom 45, 513.Google Scholar
Hartmann, A (1982). Prähistorische Goldfunde aus Europa. Studien zu den Anfängen der Metallurgie. Berlin: Gebrüder Mann Verlag.Google Scholar
Montero, I & Rovira, S (1991). El oro y sus aleaciones en la orfebreria prerromana. Archivo Español de Arqueología 64, 721.Google Scholar
Murillo-Barroso, M, Costa Caramé, ME, Díaz-Guardamino Uribe, M, García Sanjúan, L & Mora Molina, C (2015). A reappraisal of Iberian Copper Age goldwork: Craftmanship, symbolism and art in a non-funerary gold sheet from Valencina de la Concepción. Cambridge Archaeol J 25(3), 565596.Google Scholar
Newbury, DE & Ritchie, NWM (2014). Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J Mater Sci 50(2), 493518.Google Scholar
Nocete, F, Sáez, R, Bayona, MR, Nieto, JM, Peramo, A, López, P, Gil-Ibarguchi, JI, Inácio, N, García, S & Rodríguez, J (2014). Gold in the Southwest of the Iberian Peninsula during the 3rd Millennium BC. J Archaeol Sci 41, 691704.Google Scholar
Ontalba Salamanca, MA, Ager, FJ, Ynsa, MD, Gómez Tubío, BM, Respaldiza, , García López, J, Fernández-Gómez, F, Bandera, ML & Grime, GW (2001). External microbeam set-up at the CNA (Sevilla) and its application to the study of Tartesic jewellery. Nucl Instrum Methods Phys Res B 181, 664669.Google Scholar
Ontalba Salamanca, MA, Demortier, G, Fernandez Gomez, F, Coquay, P, Ruvalcaba-Sil, J-L & Respaldiza, MA (1998). PIXE and SEM studies of Tartesic gold artefacts. Nucl Instrum Methods Phys Res B 136–138, 851857.Google Scholar
Ortega-Feliu, I, Scrivano, S, Gómez-Tubío, B, Ager, FJ, Bandera, ML, Respaldiza, MA, Navarro, AD & San Martín, C (2018). Technical characterization of the necklace of El carambolo hoard (Camas, Seville, Spain). Microchem J 139, 401409.Google Scholar
Perea, A (1991). Orfebreria Prerromana. Arqueologia del Oro. Madrid: Comunidad de Madrid.Google Scholar
Perea, A & Armbruster, B (2011). Tomb 100 at Cabezo Lucero: New light on goldworking in fourth-century BC Iberia. Antiquity 85, 158171.Google Scholar
Perea, A, García Vuelta, O & Fernández Freire, C (2010). El Proyecto AU. Estudio Arqueométrico de la Producción de Oro en la Península Ibérica. Madrid: Consejo Superior de Investigaciones Científicas.Google Scholar
Rapson, WS (1996). Tarnish resistance, corrosion and stress: Corrosion cracking of gold alloys. Gold Bull 29, 6169.Google Scholar
Scrivano, S, Gómez-Tubío, B, Ortega-Feliu, I, Ager, FJ, Moreno-Suárez, AI, Respaldiza, MA, Bandera, ML & Marmolejo, A (2013). Identification of soldering and welding processes in ancient gold jewelry by micro-XRF spectroscopy. X-Ray Spectrom 42, 251255.Google Scholar
Scrivano, S, Ortega-Feliu, I, Gómez-Tubío, B, Ager, FJ, Bandera, ML, Respaldiza, MA & Ontalba Salamanca, MA (2017). Non-destructive micro-analytical system for the study of the manufacturing processes of a group of gold jewels from “El Carambolo” treasure. Radiat Phys Chem 130, 133141.Google Scholar
Soares, AMM, Alves, LC, Frade, JC, Valério, P, Araújo, MF, Candeias, A, Silva, RJC & Valera, AC (2014). Bell beaker gold foils from Perdigões (Southern Portugal) – manufacture and use. In Proceedings of the 39th International Symposium for Archaeometry, Scott, RB, Braekmans, D, Carremans, M & Degryse, P (Eds.), pp. 120124. Leuven: Centre for Archaeological Sciences.Google Scholar
Soares, R, Baptista, L, Pinheiro, R, Oliveira, L, Rodrigues, Z & Vale, N (2017). A necrópole da I Idade do Ferro do Monte Bolor 1-2 (S. Brissos, Beja). In Sidereum Ana III. El Río Guadiana y Tartessos, Jiménez Ávila, J (Ed.), pp. 263302. Mérida: Consorcio de la Ciudad Monumental de Mérida.Google Scholar
Soares, AMM, Valério, P, Silva, RJC, Alves, LC & Araújo, MF (2010). Early Iron Age gold buttons from South-Western Iberian Peninsula. Identification of a gold metallurgical workshop. Trabajos de Prehistoria 67(2), 501510.Google Scholar
Tissot, I, Tissot, M, Manso, M, Alves, LC, Barreiros, MA, Marcelo, T, Carvalho, ML, Corregidor, V & Guerra, MF (2013). The earrings of Pancas treasure: Analytical study by X-ray based techniques––a first approach. Nucl Instrum Methods Phys Res B 306, 236240.Google Scholar
Troalen, LG, Tate, J & Guerra, MF (2014). Goldwork in ancient Egypt: Workshop practices at Qurneh in the 2nd Intermediate Period. J Archaeol Sci 50, 219226.Google Scholar
Valério, P, Araújo, MF, Soares, AMM, Silva, RJC, Baptista, L & Mataloto, R (2018). Early imports in the Late Bronze Age of Southwestern Iberia: The bronze ornaments of the hypogea at Monte da Ramada 1 (Southern Portugal). Archaeometry 60(2), 255268.Google Scholar
Valério, P, Silva, RJC, Araújo, MF, Soares, AMM & Barros, L (2012). A multianalytical approach to study the Phoenician bronze technology in the Iberian Peninsula—a view from Quinta do Almaraz. Mater Charact 67, 7482.Google Scholar
Valério, P, Silva, RJC, Soares, AMM, Araújo, MF, Braz Fernandes, FM, Silva, AC & Berrocal-Rangel, L (2010). Technological continuity in Early Iron Age bronze metallurgy at the South-Western Iberian Peninsula—a sight from Castro dos Ratinhos. J Archaeol Sci 37(8), 18111819.Google Scholar
Valério, P, Soares, AMM, Araújo, MF & Carvalho, AF (2017). Micro-EDXRF investigation of Chalcolithic gold ornaments from Portuguese Estremadura. X-Ray Spectrom 46, 252258.Google Scholar