No CrossRef data available.
Article contents
Mapping Organism Expression Levels at Cellular Resolution in Developing Drosophila
Published online by Cambridge University Press: 02 July 2020
Abstract
Sequence specific transcription factors are the predominant regulators of animal gene expression controlling nearly all biological processes. We are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within an entire organism. Pregastrula Drosophila embryos have been chosen because these embryos allow high resolution 3D optical imaging since they comprise a single layer of dividing cells surrounding a yolk sac. in addition, the transcription network controlling gene expression is well characterized in early Drosophila embryos[1], and is being further dissected by a multi-laboratory collaboration, the Berkeley Collaboration in Drosophila Genomics, which encompasses this work.
Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy (Figure 1). Intensity-based segmentation of the total DNA image[2] produces a nuclear mask which defines the nuclear boundaries, their location and the number of cells within the embryo (Figure 2). Presently, dilation of the nuclear volumes into their nearest-neighbours[3] is used to estimate the boundary of the cell (Figure 3) and superposition of these images produces a morphological mask defining each cell and its nucleus.
- Type
- Video and Digital Imaging Microscopy: a Symposium Honoring Dr. Shinya Inoue (Organized by E. Salmon)
- Information
- Copyright
- Copyright © Microscopy Society of America 2001