Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:14:02.409Z Has data issue: false hasContentIssue false

Kinetic-Energy Discrimination for Atom Probe Tomography

Review Article

Published online by Cambridge University Press:  19 January 2011

Thomas F. Kelly*
Affiliation:
Cameca Instruments, Inc., formerly Imago Scientific Instruments Corporation, 5500 Nobel Drive, Madison, WI 53726, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The benefits of using kinetic-energy information to aid ion discrimination in atom probe tomography (APT) are explored. Ion peak interferences in time-of-flight (TOF) mass spectra are categorized by difficulty of discrimination using TOF and kinetic-energy information. Several of these categories, which are intractable interferences when only TOF information is available, may be discriminated when kinetic-energy information also is available. Furthermore, many opportunities for removing noise from composition determinations and three-dimensional images are enabled. Modest kinetic-energy resolving powers (KRPs) of 10 or so should be sufficient to have a major impact on APT. With KRP of about 100, the energy deficits in voltage pulsing may be resolved to enable peak discrimination in straight-flight-path instruments. Real examples and simulated mass spectra are used to illustrate the benefits of kinetic-energy discrimination. Many of the conclusions are applicable generally in TOF spectroscopy. Current detectors do not provide the kinetic energy of incoming ions, but there are realistic prospects for building such detectors and these are discussed. A program to develop these detectors should be pursued.

Type
Atom Probe Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Audi, G., Wapstra, A.H. & Thibault, C. (2003). The Ame2003 atomic mass evaluation (II). Nucl Phys A 729, 337676.CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13(6), 418427.CrossRefGoogle ScholarPubMed
Dreschler, M. & Wolf, P. (1960). Proceedings 4th International Conference on Electron Microscopy, Vol. 1, pp. 835848. Berlin: Springer.Google Scholar
Estey, B.V., Beall, J.A., Hilton, G.C., Irwin, K.D., Schmidt, D.R., Ullom, J.N. & Schwall, R.E. (2009). Time-of-flight mass spectrometry with latching Nb meander detectors. IEEE Trans Appl Supercon 19(3), 382385.CrossRefGoogle Scholar
Friedrich, S. (2008). Superconducting tunnel junction photon detectors: Theory and applications. J Low Temp Phys 151(1/2), 277287.CrossRefGoogle Scholar
Frisch, H.J., Anderson, J., Byrum, K., Drake, G., May, E., Paramonov, A., Sanchez, M., Stanek, R., Weerts, H., Wetstein, M., Yusof, Z., Adams, B., Attenkofer, K., Insepov, Z., Elam, J., Libera, J., Pellin, M., Veryovkin, I., Wang, H., Zinovev, A., Beaulieu, D., Sullivan, N., Stenton, K., Bogdan, M., Frisch, H., Genat, J.-F., Heintz, M., Northrop, R., Tang, F., Ramberg, E., Ronzhin, A., Sellberg, G., Kennedy, J., Nishimura, K., Rosen, M., Ruckman, L., Varner, G., Abrams, R., Ivanov, V., Roberts, T., Va'vra, J., Siegmund, O., Tremsin, A., Routkevitch, D., Forbush, D. & Zhao, T. (2009). The development of large-area fast time-of-flight detectors. Available at http://hep.uchicago.edu/~frisch/talks/Project_description_nobudgets.pdf, p. 14.Google Scholar
Gault, B., Vurpillot, F., Bostel, A., Menand, A. & Deconihout, B. (2005). Estimation of the tip field enhancement on a field emitter under laser illumination. Appl Phys Lett 86, 094101-1094101-3.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705-1043705-8.CrossRefGoogle Scholar
Hilton, G.C., Martinis, J.M., Wollman, D.A., Irwin, K.D., Dulcie, L.K., Gerber, D., Gillevet, P.M. & Twerenbold, D. (1998). Impact energy measurement in time-of-flight mass spectrometry with cryogenic microcalorimeters. Nature 391, 672675.CrossRefGoogle ScholarPubMed
Irwin, K.D. (2006). Seeing with superconductors. Scientific American, November 2006, pp. 86–94.CrossRefGoogle Scholar
Irwin, K.D. & Hilton, G.C. (2005). Transition edge sensors. In Cryogenic Particle Detection, Topics in Applied Physics, Enss, C. (Ed.), Vol. 99, pp. 63149. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10(3), 373383.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Larson, D.J., Alvis, R.A., Lawrence, D.F., Prosa, T.J., Ulfig, R.M., Reinhard, D.A., Clifton, P.H., Gerstl, S.S.A., Bunton, J.H., Lenz, D.R., Kelly, T.F. & Stiller, K. (2008). Analysis of bulk dielectrics with atom probe tomography. Microsc Microanal 14(S2), 12541255 (CD-ROM).CrossRefGoogle Scholar
Liu, J., Wu, C.-W. & Tsong, T.T. (1991). Measurement of the atomic site specific binding energy of surface atoms of metals and alloys. Surf Sci 246, 157162.Google Scholar
Mamyrin, B.A., Karataev, V.I., Shmikk, D.V. & Zagulin, V.A. (1973). The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov Phys JETP in Trends Anal Chem 37, 4548.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography Analysis at the Atomic Scale, pp. 128130. New York: Kluwer Publishing/Plenum Press.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Ohkubo, M., Ukibe, M., Saito, N., Kushino, A., Ichimura, S. & Friedrich, S. (2005). Effects of spatial nonuniformity of superconducting-tunnel-junction ion detectors on mass spectroscopy. IEEE Trans Appl Supercond 15(2), 932935.CrossRefGoogle Scholar
Panayi, P. (2006). Curved reflectron. Patents UK 0509638.3 and US 60/682,863.Google Scholar
Parlato, L., Latempa, R., Peluso, G., Pepe, G.P., Cristiano, R. & Sobolewski, R. (2005). The characteristic electron-phonon coupling time of unconventional superconductors and implications for optical detectors. Supercond Sci Technol 18, 12441251.CrossRefGoogle Scholar
Poschenrieder, W.P. (1972). Multiple-focusing time-of-flight mass spectrometers Part II. TOFMS with equal energy acceleration. Int J Mass Spectrom Ion Phys 9(4), 357373.CrossRefGoogle Scholar
Saxey, D. W. (2010). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy doi:10.1016/j.ultramic.2010.11.021.Google ScholarPubMed
Sijbrandij, S., Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1996). Improvements in the mass resolution of the three-dimensional atom probe. Appl Surf Sci 94/95, 428433.CrossRefGoogle Scholar
Sijbrandij, S.J. & Miller, M.K. (1999). Performance of a microsphere plate electron multiplier in APFIM applications. Ultramicroscopy 79, 265271.CrossRefGoogle Scholar
Suzuki, K., Miki, S., Wang, Z., Kobayashi, Y., Shiki, S. & Ohkubo, M. (2008). Superconducting NbN thin-film nanowire detectors for time-of-flight mass spectrometry, J Low Temp Phys 15(3-4), 766770.CrossRefGoogle Scholar
Waugh, A.R., Richardson, C.H. & Jenkins, R. (1992). APFIM 200—A reflectron-based atom probe. Surf Sci 266, 501505.CrossRefGoogle Scholar
Zen, N., Casaburi, A., Shiki, S., Suzuki, K., Ejrnaes, M., Cristiano, R. & Ohkubo, M. (2009). 1 mm ultrafast superconducting stripline molecule detector. Appl Phys Lett 95, 172508.CrossRefGoogle Scholar