Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T04:41:55.420Z Has data issue: false hasContentIssue false

Introducing a Crystallography-Mediated Reconstruction (CMR) Approach to Atom Probe Tomography

Published online by Cambridge University Press:  04 February 2019

Alec C. Day*
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Anna V. Ceguerra
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Simon P. Ringer
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
*
*Author for correspondence: Alec C. Day, E-mail: [email protected]
Get access

Abstract

Current approaches to reconstruction in atom probe tomography produce results that exhibit substantial distortions throughout the analysis depth. This is largely because of the need to apply a multitude of assumptions when estimating the evolution of the tip shape, and other pseudo-empirical reconstruction factors, which vary both across the face of the tip and throughout the analysis depth. We introduce a new crystallography-mediated reconstruction to improve the spatial accuracy and dramatically reduce these in-depth variations. To achieve this, we developed a barycentric transform to directly relate atomic positions in detector space to real space. This is mediated by novel crystallographic analysis techniques, including: (1) calculating the orientation of a crystal directly from the field evaporation map, (2) tracking pole locations throughout the evaporation sequence, and (3) accounting for the evolving tip radius in a manner that removes the dependence on the geometric field factor. By improving the in-depth spatial accuracy of the atom probe reconstruction, a greater accuracy of the atomic neighborhood relationships is available. This is critical in modern materials science and engineering, where an understanding of the solid solution architecture, precipitate dispersions, and descriptions of the interfaces between phases or grains are key inputs to microstructure–property relationships.

Type
Reconstruction
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araullo-Peters, VJ, Breen, A, Ceguerra, AV, Gault, B, Ringer, SP & Cairney, JM (2015). A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 714.Google Scholar
Babinsky, K, Knabl, W, Lorich, A, De Kloe, R, Clemens, H & Primig, S (2015). Grain boundary study of technically pure molybdenum by combining APT and TKD. Ultramicroscopy 159, 445451.Google Scholar
Barber, CB, Dobkin, DP & Huhdanpaa, H (1996). The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4), 469483.Google Scholar
Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87–88(1–4), 298304.Google Scholar
Bevis, M & Cambareri, G (1987). Computing the area of a spherical polygon of arbitrary shape. Math Geol 19(4), 335346.Google Scholar
Blavette, D, Sarrau, JM, Bostel, A & Gallot, J (1982). Direction et distance d'analyse à la sonde atomique. Rev Phys Appl (Paris) 17(7), 435440.Google Scholar
Boll, T, Al-Kassab, T, Yuan, Y, & Liu, Z-G (2007). Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107(9), 796801.Google Scholar
Breen, AJ, Babinsky, K, Day, AC, Eder, K, Oakman, CJ, Trimby, PW, Primig, S, Cairney, JM & Ringer, SP (2017). Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc Microanal 23(2), 279290.Google Scholar
Breen, AJ, Moody, MP, Ceguerra, AV, Gault, B, Araullo-Peters, VJ & Ringer, SP (2015). Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy 159(Part 2), 314323.Google Scholar
Cerezo, A, Warren, P & Smith, G (1999). Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79(1–4), 251257.Google Scholar
Chen, Y & Schuh, CA (2015). Grain boundary networks in nanocrystalline alloys from atom probe tomography quantization and autocorrelation mapping. Physica Status Solidi (a) 212(10), 23022308.Google Scholar
De Geuser, F & Gault, B (2017). Reflections on the projection of ions in atom probe tomography. Microsc Microanal 23(2), 238246.Google Scholar
Delaunay, B (1934). Sur la sphere vide. Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793.Google Scholar
Edelsbrunner, H, Kirkpatrick, D & Seidel, R (1983). On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4), 551559.Google Scholar
Felfer, P & Cairney, J (2016). A computational geometry framework for the optimisation of atom probe reconstructions. Ultramicroscopy 169, 6268.Google Scholar
Gault, B, Haley, D, De Geuser, F, Moody, M, Marquis, E, Larson, D & Geiser, B (2011 a). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111(6), 448457.Google Scholar
Gault, B, Loi, ST, Araullo-Peters, VJ, Stephenson, LT, Moody, MP, Shrestha, SL, Marceau, RKW, Yao, L, Cairney, JM & Ringer, SP (2011 b). Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111(11), 16191624.Google Scholar
Gault, B, Moody, MP, Cairney, JM, & Ringer, SP (2012 a). Atom probe crystallography. Mater Today 15(9), 378386.Google Scholar
Gault, B, Moody, MP, Cairney, JM, & Ringer, SP (2012 b). Atom Probe Microscopy. New York: Springer.Google Scholar
Gault, B, Moody, MP, De Geuser, F, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2010). Spatial resolution in atom probe tomography. Microsc Microanal 16(1), 99110.Google Scholar
Gault, B, Moody, MP, De Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, LT, Haley, D, & Ringer, SP (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 034913-034913-034919.Google Scholar
Geiser, B, Larson, D, Oltman, E, Gerstl, S, Reinhard, D, Kelly, T & Prosa, T (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(S2), 292293.Google Scholar
Geiser, BP, Kelly, TF, Larson, DJ, Schneir, J & Roberts, JP (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13(6), 437447.Google Scholar
Hawkes, PW & Kasper, E (1996). Principles of Electron Optics, vol. 3. London: Academic Press.Google Scholar
Jiang, S, Wang, H, Wu, Y, Liu, X, Chen, H, Yao, M, Gault, B, Ponge, D, Raabe, D & Hirata, A (2017). Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544(7651), 460.Google Scholar
Kelly, TF & Miller, MK (2007). Atom probe tomography. Rev Sci Instrum 78(3), 031101.Google Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography: A User's Guide. New York: Springer.Google Scholar
Liddicoat, PV, Liao, X-Z, Zhao, Y, Zhu, Y, Murashkin, MY, Lavernia, EJ, Valiev, RZ & Ringer, SP (2010). Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 1, 63.Google Scholar
Loi, ST, Gault, B, Ringer, SP, Larson, DJ & Geiser, BP (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.Google Scholar
Marceau, RK, Sha, G, Ferragut, R, Dupasquier, A & Ringer, S (2010). Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing. Acta Mater 58(15), 49234939.Google Scholar
Miller, MK & Forbes, RG (2014). Atom Probe Tomography: The Local Electrode Atom Probe. New York: Springer.Google Scholar
Moody, MP, Gault, B, Stephenson, LT, Marceau, RKW, Powles, RC, Ceguerra, AV, Breen, AJ & Ringer, SP (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Microsc Microanal 17(02), 226239.Google Scholar
Newman, R, Sanwald, R & Hren, J (1967). A method for indexing field ion micrographs. J Sci Instrum 44(10), 828.Google Scholar
Sha, G, Yao, L, Liao, X, Ringer, SP, Duan, ZC & Langdon, TG (2011). Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 111(6), 500505.Google Scholar
Trimby, PW (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.Google Scholar
Wallace, ND, Ceguerra, AV, Breen, AJ & Ringer, SP (2018). On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space. Ultramicroscopy 189, 6575.Google Scholar
Weisstein, EW (2018) Barycentric Coordinates. Retrieved from Mathworld—A Wolfram Web Resource, Available at http://mathworld.wolfram.com/BarycentricCoordinates.html.Google Scholar
Wilkes, T, Smith, G & Smith, D (1974). On the quantitative analysis of field-ion micrographs. Metallography 7(5), 403430.Google Scholar
Yao, L (2016). A filtering method to reveal crystalline patterns from atom probe microscopy desorption maps. MethodsX 3, 268273.Google Scholar
Yao, L, Moody, MP, Cairney, JM, Haley, D, Ceguerra, AV, Zhu, C & Ringer, SP (2011). Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111(6), 458463.Google Scholar
Yao, L, Ringer, S, Cairney, J & Miller, MK (2013). The anatomy of grain boundaries: their structure and atomic-level solute distribution. Scr Mater 69(8), 622625.Google Scholar
Supplementary material: Image

Day et al. supplementary material

Day et al. supplementary material 1

Download Day et al. supplementary material(Image)
Image 25.6 MB