Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T03:40:01.701Z Has data issue: false hasContentIssue false

Interdisciplinary Development of Eels Compositional Mapping

Published online by Cambridge University Press:  02 July 2020

R.D. Leapman*
Affiliation:
Biomedical Engineering & Instrumentation Program, DIRS, ORS, National Institutes of Health, Bethesda, MD, 20892
Get access

Extract

Historically, electron energy-loss spectroscopy (EELS) in the electron microscope has evolved from work performed in biological as well as materials science and physics laboratories. The task of developing EELS compositional imaging for biological applications has been particularly challenging for two reasons. First, biological structures are radiation-sensitive and second, elements and compounds of interest are distributed sparsely in a multi-component matrix. For example, the physiologically important element, calcium, is typically present in cells at only 10-100 atomic parts per million.3,5 Even, when individual molecular components of a cell are isolated, elemental concentrations can still be low. Thus, double-stranded DNA contains only six phosphorus atoms per nanometer of its length; and protein molecules typically contain less than 0.5 per cent sulfur. This demand for high sensitivity in biological applications has provided an impetus to improve electron optics, to develop flexible image acquisition methods and to optimize spectral processing.

Type
Compositional Mapping With High Spatial Resolution
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Isaacson, M.S. and Johnson, D., Ultramicroscopy, 1 (1975) 33.CrossRefGoogle Scholar
2.Shuman, H. and Kruit, P., Rev. Sci Instrum., 56 (1985) 231.CrossRefGoogle Scholar
3.Shuman, H. et al., Ann. NY Acad. Sci. 483 (1986) 295.CrossRefGoogle Scholar
4.Ottensmeyer, F.P., J. Ultrastruct. Res., 88 (1984) 121.CrossRefGoogle Scholar
5.Leapman, R.D. et al., Ultramicroscopy, 49 (1993) 225.CrossRefGoogle Scholar
6.Tang, Z. et al., J. Microsc., 175 (1994) 100.CrossRefGoogle Scholar
7.Krivanek, O.L., Ahn, C.C. and Keeney, R.B., Ultramicroscopy, 22 (1987) 103.CrossRefGoogle Scholar
8.Hunt, J.A. and Williams, D.B., Ultramicroscopy 38 (1991) 47.CrossRefGoogle Scholar
9.Leapman, R.D. and Hunt, J.A., J. Microsc. Soc. Am., 1 (1995) 9-3.Google Scholar
10.Hunt, J.A. and Harmon, R., Gatan Spectrum Imaging Package, to be published.Google Scholar
11.Jeanguillaume, C. and Colliex, C., Ultramicroscopy, 28 (1989) 252.CrossRefGoogle Scholar
12.LeFurgey, A. et al., J. Microsc., 117 (1992) 191.CrossRefGoogle Scholar
13.Sun, S.Q. et al., J. Microsc., 177 (1995) 18.CrossRefGoogle Scholar
14.Hunt, J.A. et al., Ultramicroscopy, 58 (1995) 55.CrossRefGoogle Scholar
15.Krivanek, O.L et al., Ultramicroscopy, 59 (1995) 267.CrossRefGoogle Scholar
16.Jáger, W. and Mayer, J., Ultramicroscopy 59 (1995) 33.CrossRefGoogle Scholar
17.Hofer, F. et al., Ultramicroscopy 59 (1995) 15.CrossRefGoogle Scholar
18.Crozier, P.A., Ultramicroscopy 58 (1995) 157.CrossRefGoogle Scholar
19.Leapman, R.D., Jarnik, M. and Steven, A.C., J. Struct. Biol, 120 (1997) 168.CrossRefGoogle Scholar
20.Lavergne, J.-L. et al., Microsc. Microanal. Microstruct., 3 (1992) 517.CrossRefGoogle Scholar
21.Körtje, K.-H., J. Microsc., 184 (1996) 175.CrossRefGoogle Scholar
22.Abolhassani-Dadras, S. et al., J. Microsc., 183 (1996) 215.CrossRefGoogle Scholar
23.Mayer, J. and Plitzko, J.M., J. Microsc., 183 (1996) 2.CrossRefGoogle Scholar